首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin Inhibition of Brain Membrane Phosphorylation   总被引:4,自引:3,他引:1  
Abstract: Calmodulin has been found to inhibit the phosphorylation of rat brain membrane proteins of molecular weight 14,900–18,900 in a dose-dependent manner. This phenomenon was seen under conditions in which calmodulin simultaneously produced a stimulatory effect on the phosphorylation of proteins of molecular weight 51,000 and above. This inhibition required calcium, but was not sensitive to cyclic AMP or increasing ATP concentration and was not due to activation of a phosphatase. These results suggest either that calmodulin induces its inhibitory effects on phosphorylation by an indirect mechanism via a presently unknown pathway, or that in addition to the kinase stimulated by calmodulin, there exists another distinct kinase which is inhibited by calmodulin.  相似文献   

2.
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.  相似文献   

3.
The phosphorylation of thylakoid membrane proteins was studied using isolated chloroplasts from Euglena gracilis. We have found, using [32P] labelling, that this phenomenon was light-driven, reversible in the dark, and completely inhibited by Carbonyl cyanide m-chlorophenyl-hydrazone (CCCP). Polyacrylamide gel electrophoresis containing SDS has revealed five main bands which have been found to be proteins. Amino acid analysis of the bands has shown that [32P] is incorporated into phosphothreonine.  相似文献   

4.
Phosphorylation and glycosylation are important posttranslational events in the biosynthesis of proteins. The different degrees of phosphorylation and glycosylation of proteins have been an intriguing phenomenon. Advances in genetic engineering have made it possible to control the degree of glycosylation and phosphorylation of proteins. Structural biology of phosphorylated and glycosylated proteins has been advancing at a much slower pace due to difficulties in using high-resolution NMR studies in solution phase. Major difficulties have arisen from the inherent mobilities of phosphorylated and glycosylated side chains. This paper reviews molecular and structural biology of phosphorylated and glycosylated proteins expressed in eukaryotic expression systems which are especially suited for large-scale production of these proteins. In our laboratory, we have observed that eukaryotic expression systems are particularly suited for the expression of thermostable light-activated proteins, e.g., bacteriorhodopsins and plastocyanins.  相似文献   

5.
Phosphorylation and glycosylation are important posttranslational events in the biosynthesis of proteins. The different degrees of phosphorylation and glycosylation of proteins have been an intriguing phenomenon. Advances in genetic engineering have made it possible to control the degree of glycosylation and phosphorylation of proteins. Structural biology of phosphorylated and glycosylated proteins has been advancing at a much slower pace due to difficulties in using high-resolution NMR studies in solution phase. Major difficulties have arisen from the inherent mobilities of phosphorylated and glycosylated side chains. This paper reviews molecular and structural biology of phosphorylated and glycosylated proteins expressed in eukaryotic expression systems which are especially suited for large-scale production of these proteins. In our laboratory, we have observed that eukaryotic expression systems are particularly suited for the expression of thermostable light-activated proteins, e.g., bacteriorhodopsins and plastocyanins.  相似文献   

6.
蛋白质酪氨酸磷酸化在抗失巢凋亡的癌细胞中的失调变化   总被引:2,自引:0,他引:2  
失巢凋亡是细胞与细胞外基质脱离发生的一种特定的凋亡方式 . 癌细胞抗失巢凋亡或失巢生存能力可以使之在转移过程中生存 . 业已发现癌细胞失巢生存与 PI3K-PKB/Akt 、 MAPK 这两条重要信号途径有关,但是 PI3K-PKB/Akt 、 MAPK 通路的上游酪氨酸激酶途径还不甚清楚 . 为此设计了一种基于 SH2-pTyr 特异性结合特性的功能性筛选方法,以期发现癌细胞失巢生存相关的酪氨酸磷酸化蛋白质,为最终明确酪氨酸激酶途径提供有力的实验依据 . 实验发现, MDCK 细胞悬浮培养后失巢凋亡,但癌细胞可以失巢生存 . 与这一现象相一致的是,悬浮培养后, MDCK 细胞中一系列 SH2 结合的酪氨酸磷酸化蛋白质水平急剧下降,而癌细胞中蛋白质酪氨酸磷酸化水平并不呈锚着依赖性 . 细胞悬浮培养后,随着培养时间的延长, MDCK 细胞中 Abl S SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐降低,在 H460 肺癌细胞中经过短暂下降后升高, H1792 肺癌细胞随着培养时间的延长, Abl SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐增加 . Fyn SH2 和 Crk SH2 结合的蛋白质分别为 FAK 和 p130Cas ,后者是重要的失巢生存信号 . 这些结果提示,酪氨酸磷酸化蛋白质可能赋予肺癌细胞失巢生存能力 . 结果也表明,功能性 SH2 筛查方法可以有效地发现肿瘤细胞中失巢生存相关的酪氨酸磷酸化蛋白质 .  相似文献   

7.
Evidence for phosphorylation of proteins by protein kinases has been found in Salmonella typhimurium despite previous indications that protein kinase action is absent in prokaryotes. At least four proteins have been found to be phosphorylated. Serine and threonine phosphates have been isolated from acid hydrolysates of these proteins after in vivo and in vitro labeling. The kinases do not phosphorylate histones, casein, or phosvitin. It would appear that phosphorylation as a regulatory control exists in prokaryotes.  相似文献   

8.
Alkali-stable phosphorylation of proteins, particularly phosphotyrosine and phosphohistidine, is an important phenomenon in cells. In the case of phosphohistidine and some other phosphoamino acids, the phosphorylation is acid-labile and in these cases studies have been severely limited by the absence of a rapid assay suitable for acid-labile phosphorylation. The assay presented here involves a conventional kinase assay reaction followed by mild alkaline hydrolysis and adsorption of the product to washed Nytran paper at high pH. After further washing, at pH 9, the radioactivity on the papers is determined by liquid scintillation counting. Hence, acid-labile phosphorylation is preserved. The assay is selective for alkali-stable phosphorylation but not fully specific, mainly due to the need to balance the severity of the partial alkaline hydrolysis with the stability of the protein-peptide bonds. The assay has been used for the purification and characterization of a protein histidine kinase from Saccharomyces cerevisiae.  相似文献   

9.
Evidence has been obtained for the occurrence of a cAMP-dependent serine protein kinase associated with the inner membrane/matrix of mammalian mitochondria. The catalytic site of this kinase is localized at the inner side of the inner membrane, where it phosphorylates a number of mitochondrial proteins. One of these has been identified as the AQDQ subunit of complex I. cAMP-dependent phosphorylation of this protein promotes the activity of complex I and mitochondrial respiration. A 5 bp duplication in the nuclear gene encoding this protein has been found in a human patient, which eliminates the phosphorylation site. PKA anchoring proteins have recently been identified in the outer membrane of mammalian mitochondria, which could direct phosphorylation of proteins at contact sites with other cell structures.  相似文献   

10.
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.  相似文献   

11.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

12.
The covalent modification of proteins by phosphorylation constitutes a major regulatory mechanism. It was first recognized in mammalian tissues. A conclusive evidence for the occurrence of protein phosphorylation and protein kinases in coliform bacteria was obtained in 1978. Several phosphate labeled proteins were found when Salmonella typhimurium was pulse-labeled with 32p(i) and solubilized bacterial contents were analyzed by SDS-polyacrylamide gel electrophoresis. In streptomycetes protein phosphorylation has not yet been demonstrated. We found that Streptomyces albus possesses a protein kinase activity. This in vitro protein phosphorylation is cAMP-independent.  相似文献   

13.
The differentiation of skeletal muscle has been associated with altered phosphorylation status of individual proteins. However, a global analysis of protein phosphorylation during myogenesis has yet to be undertaken. Here, we report the identification of over 130 putative phosphoproteins from murine C2C12 muscle cells. Cell extracts were fractionated on phosphoprotein enrichment columns and the resulting proteins were detected by two-dimensional gel electrophoresis and silver stain, and identified by liquid chromatography coupled to electrospray tandem mass spectrometry. The early differentiation of C2C12 myoblasts was found to be accompanied by changes in the phosphorylation or expression of numerous proteins including cytoskeletal, heat shock and signaling proteins, the pp32 family of nuclear phosphoproteins, several disease-associated gene products and other characterized and uncharacterized proteins.  相似文献   

14.
Post-translational modifications have major importance for the structure and function of a multiplicity of proteins. Phosphorylation is a widespread phenomenon among eukaryotic proteins. Whereas O-phosphorylation on the side chains of serine, threonine, and tyrosine in proteins is well known and has been studied extensively, to our knowledge the endogenous phosphorylation of hydroxyproline has not previously been reported. In the present work, we provide evidence for the first time that O-phosphohydroxyproline (Hyp(P)) is a proteinogenic amino acid. To detect Hyp(P) in proteins we generated a Hyp(P)-specific polyclonal antibody. We could identify Hyp(P) in various proteins by Western blot analysis, and we characterized the sequence position of Hyp(P) in the protein α-crystallin A by electrospray ionization-tandem mass spectrometry. Our experiments clearly demonstrate hydroxylation and subsequent phosphorylation of a proline residue in α-crystallin A in the eye as well as in heart tissue of rat.  相似文献   

15.
The effects of polyamines on the in vitro phosphorylation of non-histone chromatin proteins from hog liver has been found to be dose dependent. Maximal increase occurred at 0.2 mM spermine and 2 mM spermidine, respectively. These results suggest that spermine and spermidine may have a regulating function for phosphorylation of non-histone chromatin proteins in hog liver.  相似文献   

16.
The content of casein kinase 2 is considerably decreased in ribosome-free extracts of the frontal cortex of schizophrenic and Alzheimer's disease patients in comparison to normal brains as has been demonstrated by means of immunoblotting. The activity of casein kinase 2 towards endogenous substrates and casein is also diminished in the cases of mental pathologies examined. This phenomenon may explain the well-known aberrations in the phosphorylation of structural proteins of human brain which are intrinsic for the mental diseases.  相似文献   

17.
18.
Analysis of protein phosphorylation on a proteome-scale   总被引:1,自引:0,他引:1  
Collins MO  Yu L  Choudhary JS 《Proteomics》2007,7(16):2751-2768
Phosphorylation, the most intensively studied and common PTM on proteins, is a complex biological phenomenon. Its complexity manifests itself in the large numbers of proteins that attach it, remove it and recognise it as a protein code. Since the first report of protein phosphorylation on vitellin 100 years ago, a wide variety of biochemical and analytical chemical approaches have been developed to enrich and detect protein phosphorylation. The last 5 years have witnessed a renaissance in methodologies capable of characterising protein phosphorylation on a proteome-scale. These technological advances have allowed identification of hundreds to thousands of phosphorylation sites in a proteome and have resulted in a profound paradigm shift. For the first time, using quantitative MS, the topology and significance of global phosphorylation networks may be investigated, marking a new era of cell signalling research. This review addresses recent technological advances in the purification of phosphorylated proteins and peptides and current MS-based strategies used to qualitatively and quantitatively probe these enriched phosphoproteomes. In addition, we review the application of complementary array-based technologies to derive signalling networks from kinase-substrate interactions and discuss future challenges in the field.  相似文献   

19.
20.
The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypepties and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previousin vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effects of the PKC kinase stimulate thein vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号