首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During cell swelling, cells release organic osmolytes via a volume-activated channel as part of the regulatory volume decrease. The erythrocyte membrane protein AE1 (band 3), has been shown to be involved in regulatory volume responses of fish erythrocytes. Previous studies showed that the expression of trout AE1 in Xenopus laevis oocytes induces band 3 anion exchange activity and organic osmolyte channel activity. However, an endogenous swelling-activated anion channel, IClswell, is present in Xenopus oocyte membranes. Therefore, it is not yet known whether a new organic osmolyte channel is formed or whether the endogenous channel, IClswell, is activated when trout AE1 is expressed in the oocytes. The purpose of this study was to determine whether the expression of trout AE1 in Xenopus oocytes leads to the formation and membrane insertion of a new organic osmolyte channel or activates IClswell. To differentiate between the two possibilities, we compared the time courses, pH profiles and inhibitor sensitivities of both trout AE1 and IClswell. The results of taurine-uptake experiments show that the time courses and pH levels for optimum expression of trout AE1 and IClswell differ significantly. The inhibitor sensitivities of the organic osmolyte channel mediated by trout AE1 and IClswell are also significantly different, strongly suggesting that the expression of trout AE1 in Xenopus oocytes does not activate IClswell, but rather forms a new organic osmolyte channel.  相似文献   

2.
Osmotic swelling of fish erythrocytes activates a broad-specificity permeation pathway that mediates the volume-regulatory efflux of taurine and other intracellular osmolytes. This pathway is blocked by inhibitors of the erythrocyte band 3 anion exchanger, raising the possibility that band 3 is involved in the volume-regulatory response. In this study of eel erythrocytes, a quantitative comparison of the pharmacology of swelling-activated taurine transport with that of band 3-mediated SO2− 4 transport showed there to be significant differences between them. N-ethylmaleimide and quinine were effective inhibitors of swelling-activated taurine transport but caused little, if any, inhibition of band 3. Conversely, DIDS was a more potent inhibitor of band 3-mediated SO2− 4 flux than of swelling-activated taurine transport. In cells in isotonic medium, pretreated then co-incubated with 0.1 mm DIDS, the band 3-mediated transport of SO2− 4 and Cl was reduced to a low level. Exposure of these cells to a hypotonic medium containing 0.1 mm DIDS was followed by the activation of a Cl permeation pathway showing the same inhibitor sensitivity as swelling-activated taurine transport. The data are consistent with swelling-activated transport of taurine and Cl being via a common pathway. A comparison of the swelling-activated transport rates for taurine and Cl with those for several other solutes was consistent with the hypothesis that this pathway is an anion-selective channel, similar to those that mediate the volume-regulatory efflux of Cl and organic osmolytes from mammalian cells. Received: 7 July 1995/Revised: 2 September 1995  相似文献   

3.
The unicellular protozoan parasite, Crithidia luciliae, responded to osmotic swelling by undergoing a regulatory volume decrease. This process was accompanied by the efflux of amino acids (predominantly alanine, proline and glycine). The relative loss of the electroneutral amino acids proline, valine, alanine and glycine was greater than that for the anionic amino acid, glutamate; there was negligible loss of the cationic amino acids, lysine, arginine and ornithine. The characteristics of amino acid release were investigated using a radiolabeled form of the nonmetabolized alanine analogue α-aminoisobutyrate. α-Aminoisobutyrate efflux was activated within a few seconds of a reduction of the osmolality, and inactivated rapidly (again within a few seconds) on restoration of isotonicity. The initial rate of efflux of α-aminoisobutyrate from cells in hypotonic medium was unaffected by the extracellular amino acid concentration. Hypotonically activated α-aminoisobutyrate efflux (as well as the associated regulatory volume decrease) was inhibited by the sulfhydryl reagent N-ethylmaleimide but was not inhibited by a range of anion transport blockers. As in the efflux experiments, unidirectional influx rates for α-aminoisobutyrate increased markedly following reduction of the osmolality, consistent with the swelling-activated amino acid release mechanism allowing the flux of solutes in both directions. Hypotonically activated α-aminoisobutyrate influx showed no tendency to saturate up to an extracellular concentration of 50 mm. The functional characteristics of the amino acid release mechanism are those of a channel, with a preference for electroneutral and anionic amino acids over cationic amino acids. However, the pharmacology of the system differs from that of the anion-selective channels that are thought to mediate the volume-regulatory efflux of organic osmolytes from vertebrate cells. Received: 13 May 1996/Revised: 9 July 1996  相似文献   

4.
5.
6.
Membrane potential and whole-cell current were studied in rat pancreatic β-cells using the `perforated patch' technique and cell volume measured by a video-imaging method. Exposure of β-cells to the α-ketoaldehyde methylglyoxal (1 mm) resulted in depolarization and electrical activity. In cells voltage-clamped at −70 mV, this effect was accompanied by the development of inward current noise. In voltage-pulse experiments, methylglyoxal activated an outwardly rectifying conductance which was virtually identical to the volume-sensitive anion conductance previously described in these cells. Two inhibitors of this conductance, 4,4′-dithiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), also inhibited the depolarization and inward current evoked by methylglyoxal. Methylglyoxal increased β-cell volume to a relative value of 1.33 after 10 min with a gradual return towards basal levels following withdrawal of the α-ketoaldehyde. None of the effects of methylglyoxal was observed in response to t-butylglyoxal which, unlike methylglyoxal, is a poor substrate for the glyoxalase pathway. Methylglyoxal had no apparent effect on β-cell K+ channel activity. It is suggested that the metabolism of methylglyoxal to d-lactate causes β-cell swelling and activation of the volume-sensitive anion channel, leading to depolarization. These findings could be relevant to the stimulatory action of d-glucose, the metabolism of which generates significant quantities of l-lactate. Received: 15 May 1998/Revised: 25 September 1998  相似文献   

7.
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.  相似文献   

8.
During stroke orhead trauma, extracellular K+concentration increases, which can cause astrocytes to swell. In vitro,such swelling causes astrocytes to release excitatory amino acids, which may contribute to excitotoxicity in vivo. Several putative swelling-activated channels have been identified through which suchanionic organic cellular osmolytes can be released. In the presentstudy, we sought to identify the swelling-activated channel(s) responsible forD-[3H]aspartaterelease from primary cultured astrocytes exposed to either KCl orhypotonic medium. KCl-inducedD-[3H]aspartaterelease was inhibited by the anion channel inhibitors 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), dideoxyforskolin, L-644711, ATP, ITP, 3'-azido-3'-deoxythymidine, DIDS, andtamoxifen but not by cAMP. The cell swelling caused by raised KCl wasnot inhibited by extracellular ATP or tamoxifen as measured by an electrical impedance method, which suggests that these anion channel inhibitors directly blocked the channel responsible for efflux. Extracellular nucleotides and DIDS, however, had no or only partial effects onD-[3H]aspartaterelease from cells swollen by hypotonic medium, but such release wasinhibited by NPPB, dideoxyforskolin, and tamoxifen. Of theswelling-activated channels so far identified, our data suggest that avolume-sensitive outwardly rectifying channel is responsible forD-[3H]aspartaterelease from primary cultured astrocytes during raised extracellularK+ and possibly during hypotonicmedium-induced release.

  相似文献   

9.
Whole-cell currents in mouse zygotes were measured using the patch-clamp technique in whole-cell mode. Upon exposure to hypotonic medium, patch-clamped zygotes increased in volume and developed a large swelling-activated current. The swelling-activated current was blocked by Cl- channel blockers, and the magnitude of the current and reversal potential were dependent on the Cl- gradient. Thus, the swelling-activated current had the properties of a current mediated by anion channels. However, in addition to being permeable to Cl- and I- (with I- having the greater permeability), there was also a significant swelling-activated conductance to aspartate and taurine, indicating that the swelling-activated channels in zygotes conduct not only inorganic anions but organic osmolytes as well. This swelling-activated anion and organic osmolyte pathway likely underlies the ability of zygotes to recover from an increase in volume, and it may function to regulate intracellular amino acid concentrations.  相似文献   

10.
A decrease in the intracellular levels of osmotically active species has invariably been seen after swelling of mammalian brain tissue preparations. The exact identity of the species, and the manner of their decrease, remain to be described. We investigated the swelling-activated decrease of organic osmolytes in rat cortical brain slices using (1)H- and (31)P-magnetic resonance spectroscopy. We found that acute hypo-osmotic shock causes decreases in the levels of a range of intracellular amino acids and amino acid derivatives, N-acetyl-aspartate, creatine, GABA, glutamate, hypotaurine, and also in the levels of the methylamines glycerol-phosphorylcholine, phosphorylcholine and choline. Incubation of cortical slices with the anion channel blockers niflumic acid and tamoxifen caused inhibition of organic osmolyte efflux, suggesting that such osmolyte efflux occurs through anion channels. Intracellular phosphocreatine was also seen to decrease during acute hypo-osmotic superfusion, although intracellular ATP remained constant. In addition, the acidification of an intracellular compartment was observed during hypo-osmotic superfusion. Our results suggest a link between brain energy reserve and brain osmoregulation.  相似文献   

11.
Two channels, distinguished by using single-channel patch-clamp, carry out potassium transport across the red cell membrane of lamprey erythrocytes. A small-conductance, inwardly rectifying K+-selective channel was observed in both isotonic and hypotonic solutions (osmolarity decreased by 50%). The single-channel conductance was 26 ± 3 pS in isotonic (132 mm K+) solutions and 24 ± 2 pS in hypotonic (63 mm K+) solutions. No outward conductance was found for this channel, and the channel activity was completely inhibited by barium. Cell swelling activated another inwardly rectifying K+ channel with a larger inward conductance of 65 pS and outward conductance of 15 pS in the on-cell configuration. In this channel, rectification was due to the block of outward currents by Mg2+ and Ca2+ ions, since when both ions were removed from the cytosolic side in inside-out patches the conductance of the channel was nearly ohmic. In contrast to the small-conductance channel, the swelling-activated channel was observed also in the presence of barium in the pipette. Neither type of channel was dependent on the presence of Ca2+ ions on the cytosolic side for activity. Received: 18 July 1997/Revised: 30 January 1998  相似文献   

12.
K-Cl cotransport (COT), a ouabain-insensitive, Cl-dependent bidirectional K flux, is ubiquitously present in all cells, plays a major role in ion and volume homeostasis, and is activated by cell swelling and a variety of chemical interventions. Lithium modulates several cation transport pathways and inhibits phospholipid turnover in red blood cells (RBCs). Lithium also inhibits K-Cl COT by an unknown mechanism. To test the hypothesis whereby Li inhibits swelling-activated K-Cl COT by altering either its osmotic response, its regulation, or by competing with K for binding sites, low K (LK) sheep (S) RBCs were loaded with Li by Na/Li exchange or the cation ionophore nystatin. K-Cl COT was measured as the Cl-dependent, ouabain-insensitive K efflux or Rb influx. The results show that Li altered the cell morphology, and increased both cell volume and diameter. Internal (Li i ) but not external (Li o ) Li inhibited swelling-activated K-Cl COT by 85% with an apparent K i of ∼7 mm. In Cl, Li i decreased K efflux at relative cell volumes between 0.9 and 1.2, and at external pHs between 7.2 and 7.4. Li i reduced the V max and increased the K m for K efflux in Cl. Furthermore, Li i increased the production of diacylglycerol in a bimodal fashion, without significant effects on the phosphatidylinositol concentration, and revealed the presence of a complete PI cycle in LK SRBCs. Finally, phorbol ester treatment and PD89059, an inhibitor of mitogen-activated protein kinase (ERK2) kinase, caused a time-dependent inhibition of K-Cl COT. Hence, Li i appears to inhibit K-Cl COT by acting at an allosteric site on the transporter or its putative regulators, and by modulation of the cellular phospholipid metabolism and a PKC-dependent regulatory pathway, causes an altered response of K-Cl COT to pH and volume. Received: 1 November 1999/Revised: 6 June 2000  相似文献   

13.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was sensitive to Cl- channel blockers tamoxifen, NPPB and DIDS. In single-channel recordings, cell swelling activated a single channel current which showed outward rectification with open probability of 0.76 +/- 0.08 and conductance of 38.1 +/- 2.5 pS at +100 mV under [Cl-] symmetrical condition. I-V relation revealed the reversal potential as expected for a Cl(-)-selective channel. These results suggested that in mouse cardiac myocytes, swelling-activated, outward rectifying chloride channel with a single channel conductance of 38.1 +/- 2.5 pS (at +100 mV under [Cl-] symmetrical condition) underlies the volume regulatory Cl- channel.  相似文献   

15.
Whole-cell recordings were used to identify in MCF-7 human breast cancer cells the ion current(s) required for progression through G1 phase of the cell cycle. Macroscopic current-voltage curves were fitted by the sum of three currents, including linear hyperpolarized, linear depolarized and outwardly rectifying currents. Both linear currents, but not the outwardly rectifying current, were increased by 1 μm intracellular Ca2+ and blocked by 2 mm intracellular ATP. When tested at concentrations previously shown to inhibit proliferation by 50%, linogliride, glibenclamide and quinidine inhibited the linear hyperpolarized current, and quinidine and linogliride inhibited the linear depolarized current; none of these agents affected the outwardly rectifying current. In contrast, tetraethylammonium completely inhibited the outwardly rectifying current, but did not inhibit either linear current. Changing the bath solution to symmetric K+ shifted the reversal potential of the linear hyperpolarized current from near the K+ equilibrium potential (−84 mV) to −4 mV. Arrest of the cell cycle in early G1 by quinidine was associated with significantly smaller linear hyperpolarized currents, without a change in the linear depolarized or outwardly rectifying currents, but this reduction was not observed with arrest by lovastatin at a site ≈6 hr later in G1. The linear hyperpolarized current was significantly larger in ras-transformed than in untransformed cells. We conclude that the linear hyperpolarized current is an ATP-sensitive K+ current required for progression of MCF-7 cells through G1 phase. Received: 22 January 1999/Revised: 11 May 1999  相似文献   

16.
Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.  相似文献   

17.
CFTR is a chloride channel that is required for fluid secretion and salt absorption in many exocrine epithelia. Mutations in CFTR cause cystic fibrosis. CFTR expression influences some ion channels, but the range of channels influenced, the mechanism of the interaction and the significance for cystic fibrosis are not known. Possible interactions between CFTR and other ion channels were studied in C127 mouse mammary epithelial cell lines stably transfected with CFTR, ΔF508-CFTR, or vector. Cell lines were compared quantitatively using an 125I efflux assay and qualitatively using whole-cell patch-clamp recording. As expected, 125I efflux was significantly increased by forskolin only in the CFTR line, and forskolin-stimulated whole-cell currents were time- and voltage independent. All three lines responded to hypotonic challenge with large 125I efflux responses of equivalent magnitude, and whole-cell currents were outwardly rectified and inactivated at positive voltages. Unexpectedly, basal 125I efflux was significantly smaller in the ΔF508-CFTR cell line than in either the CFTR or control cell lines (P < 0.0001), and the magnitude of the efflux response to ionomycin was largest in the vector cell line and smallest in the cell line expressing ΔF508-CFTR (P < 0.01). Whole-cell responses to ionomycin had a linear instantaneous I-V relation and activated at depolarizing voltages. Forskolin responses showed simple summation with responses to ionomycin or hypotonic challenge. Thus, we found no evidence for interactions between CFTR and the channels responsible for swelling-mediated responses. Differences were found in basal and ionomycin-stimulated efflux, but these may arise from variations in the clonally selected cell lines that are unrelated to CFTR expression. Received: 15 November 1995/Revised: 16 February 1996  相似文献   

18.
A new technique allowing single-channel patch-clamp recordings from basolateral membranes of A6 renal epithelial cells in culture was developed. Using this technique we studied the chloride channels activated in these basolateral membranes during hypo-osmotic stress. Four different types of channel were identified and classified according to their current/voltage (I/V) relationships as observed in the on-cell configuration of the patch-clamp technique. Three of these channels had linear I/V relationships with unitary conductances of 12, 30 and 42 pS. The fourth type had an outwardly rectifying I/V curve with inward and outward conductances of 16 and 57 pS respectively. The kinetic properties of each class of channel were studied and kinetic models developed for two of them: the 42 pS channel and the outward rectifier. These models permitted the study of the evolution of the kinetic parameters during hypo-osmotic shock and revealed two different kinetic schemes of channel activation. The results of experiments made on the basolateral membranes were also compared with those of a set of analogous patch-clamp experiments carried out on isolated A6 cells. In these latter, the frequency of successful observations of active channels in a patch was 13%, whereas it was 31% for basolateral membranes. Also, of the four types of channel observed in basolateral membranes, two were never found in isolated cells, only the 12 pS channel and the outward rectifier were present in these isolated cells. Received: 17 April 1996/Revised: 26 June 1996  相似文献   

19.
20.
Osmotic cell swelling activates Cl channels to achieve anion efflux. In this study, we find that both the tyrosine kinase inhibitor herbimycin A and genetic knockout of p56lck, a src-like tyrosine kinase, block regulatory volume decrease (RVD) in a human T cell line. Activation of a swelling-activated chloride current (ICl−swell) by osmotic swelling in whole-cell patch-clamp experiments is blocked by herbimycin A and lavendustin. Osmotic activation of ICl−swell is defective in p56lck-deficient cells. Retransfection of p56lck restores osmotic current activation. Furthermore, tyrosine kinase activity is sufficient for activation of ICl−swell. Addition of purified p56lck to excised patches activates an outwardly rectifying chloride channel with 31 pS unitary conductance. Purified p56lck washed into the cytoplasm activates ICl−swell in native and p56lck-deficient cells even when hypotonic intracellular solutions lead to cell shrinkage. When whole-cell currents are activated either by swelling or by p56lck, slow single-channel gating events can be observed revealing a unitary conductance of 25–28 pS. In accordance with our patch-clamp data, osmotic swelling increases activity of immunoprecipitated p56lck. We conclude that osmotic swelling activates ICl−swell in lymphocytes via the tyrosine kinase p56lck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号