首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deviations from Mendelian 1:1 transmission ratio have been observed in mice and humans. With few exceptions, the mechanism leading to transmission-ratio distortion (TRD) remains obscure. We proposed that a genomic imprinting mechanism plays a key role in the genesis of grandparental origin-dependent TRD (Naumova et al. 2001). To further test this hypothesis, we analyzed the transmission of grandparental alleles at three imprinted regions of the mouse genome known to contain genes required for embryo development. We found and replicated moderate (58%: 42%) TRD in favor of grandmaternal alleles in the imprinted region of maternal distal Chromosome (Chr) 12 among female offspring. Comparison of transmission ratios at the distorted region of Chr 12 among 3-week-old mice with those in embryos suggests that the distortion in favor of grandmaternal alleles is owing to postimplantation embryo loss. The absence of grandparental origin-dependent TRD for maternal Chr 6 and 7 implies that the relationship between TRD and imprinting is complex. Most likely, multiple conditions are required for TRD to occur. Received: 20 June 2001 / Accepted: 28 August 2001  相似文献   

2.
Transmission ratio distortion (TRD) is defined as a significant departure from expected Mendelian ratios of inheritance of an allele or chromosome. TRD is observed among specific regions of the mouse and human genome and is frequently associated with chromosome rearrangements such as Robertsonian (Rb) chromosomes. We intercrossed mice heterozygous for a (7.18) Rb translocation and genotyped chromosomes 7 and 18 in 1812 individuals, 47% of which were informative for chromosome segregation. We substantiated previous findings that females were less likely than expected to transmit the Rb chromosome to their offspring. Surprisingly, however, we report that heterozygous males transmitted the Rb translocation chromosome significantly more frequently than the acrocentrics. The transmission of the Rb chromosome was not significantly influenced by either the sex of the Rb grandparent or the strain of the Rb.  相似文献   

3.
Transmission ratio distortion (TRD) is defined as the observed deviation from the expected Mendelian inheritance of alleles from heterozygous parents. This phenomenon is attributed to various biological mechanisms acting on germ cells, embryos or fetuses, or even in early postnatal life. Current statistical approaches typically use two independent parametrizations assuming that TRD relies on allele- or genotype-related mechanisms, although they have never been tested and compared. This study compared allele- and genotype-related TRD models on simulated datasets with 1000 genotyped offspring and real data from 168 sire–dam–offspring beef cattle trios. The analysis of simulated datasets favored the true model of analysis in most cases (>93%), and a low percentage of missidentification occurred under (almost) null dominance (genotype-related model) or similar and moderate-to-low sire- and dam-specific TRD parameters (allele-related model). Moreover, the correlation between simulated and predicted distortion parameters was high (>0.97) under the true model. The comparison of allele- and genotype-related TRD models is an appealing tool to infer the biological source of TRD (i.e. haploid vs. diploid cells) when screening the whole genome. The analysis of beef cattle data corroborated a TRD region previously reported in chromosome 4, although discarding allele-related mechanisms and favoring the genotype-related model as the more reliable one. The results of this study highlight the relevance of implementing and comparing different parametrizations to capture all kinds of TRD, and to compare them using appropriate statistical methods.  相似文献   

4.
We have analyzed the transmission of maternal alleles at loci spanning the length of the X chromosome in 47 normal, genetic disease-free families. We found a significant deviation from the expected Mendelian 1:1 ratio of grandpaternal:grandmaternal alleles at loci in Xp11.4-p21.1. The distortion in inheritance ratio was found only among male offspring and was manifested as a strong bias in favor of the inheritance of the alleles of the maternal grandfather. We found no evidence for significant heterogeneity among the families, which implies that the major determinant involved in the generation of the non-Mendelian ratio is epigenetic. Our analysis of recombinant chromosomes inherited by male offspring indicates that an 11.6-cM interval on the short arm of the X chromosome, bounded by DXS538 and DXS7, contains an imprinted gene that affects the survival of male embryos.  相似文献   

5.
Equal transmission of the two alleles at a locus from a heterozygote parent to the offspring is rarely violated. Beside the differential embryonic mortality, nondisjunction and gene conversion that are rather irregular forms of transmission-ratio distortion (TRD), there are two major forms of departure from Mendelian segregation. The first, found in females, based on the asymmetric nature of female meiosis, is usually referred to as meiotic drive, and has been well documented in a few cases. The second is segregation distortion found in males. There are several known male-related segregation distortion systems that are caused by different fertilizing capacity of sperm cells carrying alternative alleles at a particular locus. Observation of TRD effects requires a sufficient number of offspring produced by a parental pair. As individuals in a population most likely have different genotypes in TRD affecting loci, the total transmission ratio is close to the expected Mendelian ratio and masks potential TRD effects. Highly inbred strains of laboratory mice provide a very good model for studying this phenomenon, because comparing two mice strains is effectively similar as comparison of two individuals in a population. This study tests both forms of TRD in progeny of F1 hybrids from reciprocal crosses of inbred mice. Three previously unknown instances of TRD in females were observed. Therefore, this study concludes that some genes in females may carry alleles that can cause segregation distortion.  相似文献   

6.
Wu G  Hao L  Han Z  Gao S  Latham KE  de Villena FP  Sapienza C 《Genetics》2005,170(1):327-334
We have observed maternal transmission ratio distortion (TRD) in favor of DDK alleles at the Ovum mutant (Om) locus on mouse chromosome 11 among the offspring of (C57BL/6 x DDK) F(1) females and C57BL/6 males. Although significant lethality occurs in this backcross ( approximately 50%), differences in the level of TRD found in recombinant vs. nonrecombinant chromosomes among offspring argue that TRD is due to nonrandom segregation of chromatids at the second meiotic division, i.e., true meiotic drive. We tested this hypothesis directly, by determining the centromere and Om genotypes of individual chromatids in zygote stage embryos. We found similar levels of TRD in favor of DDK alleles at Om in the female pronucleus and TRD in favor of C57BL/6 alleles at Om in the second polar body. In those embryos for which complete dyads have been reconstructed, TRD was present only in those inheriting heteromorphic dyads. These results demonstrate that meiotic drive occurs at MII and that preferential death of one genotypic class of embryo does not play a large role in the TRD.  相似文献   

7.

Background

The Sb supergene in the fire ant Solenopsis invicta determines the form of colony social organization, with colonies whose inhabitants bear the element containing multiple reproductive queens and colonies lacking it containing only a single queen. Several features of this supergene — including suppressed recombination, presence of deleterious mutations, association with a large centromere, and “green-beard” behavior — suggest that it may be a selfish genetic element that engages in transmission ratio distortion (TRD), defined as significant departures in progeny allele frequencies from Mendelian inheritance ratios. We tested this possibility by surveying segregation ratios in embryo progenies of 101 queens of the “polygyne” social form (3512 embryos) using three supergene-linked markers and twelve markers outside the supergene.

Results

Significant departures from Mendelian ratios were observed at the supergene loci in 3–5 times more progenies than expected in the absence of TRD and than found, on average, among non-supergene loci. Also, supergene loci displayed the greatest mean deviations from Mendelian ratios among all study loci, although these typically were modest. A surprising feature of the observed inter-progeny variation in TRD was that significant deviations involved not only excesses of supergene alleles but also similarly frequent excesses of the alternate alleles on the homologous chromosome. As expected given the common occurrence of such “drive reversal” in this system, alleles associated with the supergene gain no consistent transmission advantage over their alternate alleles at the population level. Finally, we observed low levels of recombination and incomplete gametic disequilibrium across the supergene, including between adjacent markers within a single inversion.

Conclusions

Our data confirm the prediction that the Sb supergene is a selfish genetic element capable of biasing its own transmission during reproduction, yet counterselection for suppressor loci evidently has produced an evolutionary stalemate in TRD between the variant homologous haplotypes on the “social chromosome”. Evidence implicates prezygotic segregation distortion as responsible for the TRD we document, with “true” meiotic drive the most likely mechanism. Low levels of recombination and incomplete gametic disequilibrium across the supergene suggest that selection does not preserve a single uniform supergene haplotype responsible for inducing polygyny.
  相似文献   

8.
Imprinting and deviation from Mendelian transmission ratios.   总被引:4,自引:0,他引:4  
Deviations from a Mendelian 1:1 transmission ratio have been observed in human and mouse chromosomes. With few exceptions, the underlying mechanism of the transmission-ratio distortion remains obscure. We tested a hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and possibly results from the loss of embryos which carry imprinted genes with imprinting marks that have been incorrectly reset. We analyzed transmission of alleles in four regions of the human genome that carry imprinted genes presumably critical for normal embryonic growth and development: 11p15.5 (H19, IGF2, HASH2, etc.), 11p13 (WT1), 7p11-12 (GRB10), and 6q25-q27 (IGF2R), among the offspring of 31 three-generation Centre d'Etude de polymorphism Humain (CEPH) families. Deviations from expected 1:1 ratios were found in the maternal chromosomes for regions 11p15.5, 11p13, and 6q25-27 and in the paternal chromosomes for regions 11p15 and 7p11-p12. The likelihood of the results was assessed empirically to be statistically significant (p = 0.0008), suggesting that the transmission ratios in the imprinted regions significantly deviated from 1:1. We did not find deviations from a 1:1 transmission ratio in imprinted regions that are not crucial for embryo viability (13q14 and 15q11-q13). The analysis of a larger set of 51 families for the 11p15.5 region suggests that there is heterogeneity among the families with regard to the transmission of 11p15.5 alleles. The results of this study are consistent with the hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and embryo loss.  相似文献   

9.
The preferential transmission of the mutant allele to offspring from fathers who carry a germline mutation in the retinoblastoma gene was examined by analyzing 46 consecutive pedigrees. Among 75 offspring from 29 fathers, the ratio of carriers to noncarriers was 49%. Among the 106 offspring from 55 mothers the ratio was 57%. Neither ratio differs statistically from the expected 50%. When the analysis was limited to only those families with low-penetrance retinoblastoma, we still did not observe a biased transmission of alleles from fathers, although mothers did have an excess of carrier offspring of borderline statistical significance (the P-value was approximately 0.03). While we cannot rule out a biased transmission of alleles from some parents, there appears to be no such bias overall.  相似文献   

10.
Transmission ratio distortion (TRD) associated with mouse t haplotypes causes +/t males to transmit the t-bearing chromosome to nearly all their offspring. Of the several genes involved in this phenomenon, the t complex responder (Tcr(t)) locus is absolutely essential for TRD to occur. A candidate Tcr(t) gene called Tcp10b(t) was previously cloned from the genetically defined Tcr(t) region. Its location, restricted expression in testis, and a unique postmeiotic alternative splicing pattern supported the idea that Tcp10b(t) was Tcr(t). To test this hypothesis in a functional assay, ES cells were derived from a viable partial t haplotype, and the Tcp10b(t) gene was mutated by homologous recombination. Mutant mice were mated to appropriate partial t haplotypes to determine whether the targeted chromosome exhibited transmission ratios characteristic of the responder. The results demonstrated that the targeted chromosome retained full responder activity. Hence, Tcp10b(t) does not appear to be Tcr(t). These and other observations necessitate a reevaluation of genetic mapping data and the actual nature of the responder.  相似文献   

11.
Transmission ratio distortion (TRD) occurs when one of the two alleles from either parent is preferentially transmitted to the offspring. This leads to a statistical departure from the Mendelian law of inheritance, which states that each of the two parental alleles is transmitted to offspring with a probability of 0.5. A number of mechanisms are thought to induce TRD such as meiotic drive, gametic competition, and embryo lethality. TRD has been extensively studied in animals, but the prevalence of TRD in humans remains largely unknown. Nevertheless, understanding the TRD phenomenon and taking it into consideration in many aspects of human genetics has potential benefits that have not been sufficiently emphasized in the current literature. In this review, we discuss the importance of TRD in three distinct but related fields of genetics: developmental genetics which studies the genetic abnormalities in zygotic and embryonic development, statistical genetics/genetic epidemiology which utilizes population study designs and statistical models to interpret the role of genes in human health, and population genetics which is concerned with genetic diversity in populations in an evolutionary context. From the perspective of developmental genetics, studying TRD leads to the identification of the processes and mechanisms for differential survival observed in embryos. As a result, it is a genetic force which affects allele frequency at the population, as well as, at the organismal level. Therefore, it has implications on genetic diversity of the population over time. From the perspective of genetic epidemiology, the TRD influence on a marker locus is a confounding factor which has to be adequately dealt with to correctly interpret linkage or association study results. These aspects are developed in this review. In addition to these theoretical notions, a brief summary of the empirical evidence of the TRD phenomenon in human and mouse studies is provided. The objective of our paper is to show the potentially important role of TRD in many areas of genetics, and to create an incentive for future research.  相似文献   

12.
Although mouse t haplotypes carry recessive mutations causing male sterility and embryonic lethality, they persist in wild mouse populations via male transmission ratio distortion (TRD). Genetic evidence suggests that at least five t-haplotype-encoded loci combine to cause TRD. One of these loci, called the t complex responder (Tcr), is absolutely required for any deviation from Mendelian segregation to occur. A candidate for the Tcr gene has previously been identified. Evidence that this gene represents Tcr is its localization to the appropriate genomic subregion and testis-specific expression pattern. Here, we report the molecular cloning of the region between recombinant chromosome breakpoints defining the Tcr locus. These results circumscribe Tcr to a 150- to 220-kb region of DNA, including the 22-kb candidate responder gene. This gene and two other homologs were created by large genomic duplications, each involving segments of DNA 10-fold larger than the individual genes.  相似文献   

13.
Li  Guangwei  Jin  Jiye  Zhou  Yan  Bai  Xufeng  Mao  Donghai  Tan  Cong  Wang  Gongwei  Ouyang  Yidan 《中国科学:生命科学英文版》2019,62(4):507-516
Mendelian inheritance can ensure equal segregation of alleles from parents to offspring, which provides fundamental basis for genetics and molecular biology. Segregation distortion(SD) leads to preferential transmission of certain alleles from generation to generation. Such violation of Mendelian genetic principle is often accompanied by reproductive isolation and eventually speciation. Although SD is observed in a wide range of species from plants to animals, genome-wide dissection of such biased transmission of gametes is rare. Using nine inter-subspecific rice crosses, a genome-wide screen for SD loci is performed, which reveals 61 single-locus quantitative trait loci and 194 digenic interactions showing distorted transmission ratio, among which 24 new SD loci are identified. Biased transmission of alleles is observed in all nine crosses, suggesting that SD exists extensively in rice populations. 72.13% distorted regions are repeatedly detected in multiple populations, and the most prevalent SD hotspot that observed in eight populations is mapped to chromosome 3. Xian alleles are transmitted at higher frequencies than geng alleles in inter-subspecific crosses, which change the genetic composition of the rice populations. Epistatic interaction contributes significantly to the deviation of Mendelian segregation at the whole-genome level in rice, which is distinct from that in animals. These results provide an extensive archive for investigating the genetic basis of SD in rice, which have significant implications in understanding the reproductive isolation and formation of inter-subspecific barriers during the evolution.  相似文献   

14.
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.  相似文献   

15.
Earlier we showed that Sperm adhesion molecule1 (Spam1), the best studied sperm hyaluronidase, is involved in the sperm dysfunction associated with Robertsonian translocations (Rb). The dysfunction results in reduced fertility in mice homozygous for the Rb(6.16) or the Rb(6.15) translocation and transmission ratio distortion (TRD) in heterozygous males. This conclusion was based on the finding that Spam1 in the Rbs harbors multiple point mutations and a genomic alteration at the locus [in the case of Rb(6.16)]; and is accompanied by reduced steady-state levels of the RNA and protein. Here we show that closely linked family members in the hyaluronidase gene cluster on mouse chromosome 6, Hyalp1 and Hyal5, also harbor point mutations in these Rbs, leading to nonconservative substitutions in both the encoded proteins. To test if Spam1 by itself is capable of producing TRD we analyzed the transmission of wild-type and null alleles of the gene in the progeny of carriers and show that there is no significant TRD. This lack of TRD in null carriers argues for only a contributory role of Spam1 in the TRD seen in the Rb-bearing mice, and supports the involvement of Hyalp1 and/or Hyal5 in the sperm dysfunction and the resulting TRD. It is proposed that the clustering of point mutations in all three genes results from the cumulative effect of spontaneous mutations that do not disperse in the population due to suppression of recombination that occurs at Rb junctions.  相似文献   

16.
F(1) backcrosses involving the DDK and C57BL/6 inbred mouse strains show transmission ratio distortion at loci on two different chromosomes, 11 and X. Transmission ratio distortion on chromosome X is restricted to female offspring while that on chromosome 11 is present in offspring of both sexes. In this article we investigate whether the inheritance of alleles at loci on one chromosome is independent of inheritance of alleles on the other. A strong nonrandom association between the inheritance of alleles at loci on both chromosomes is found among male offspring, while independent assortment occurs among female offspring. We also provide evidence that the mechanism by which this phenomenon occurs involves preferential cosegregation of nonparental chromatids of both chromosomes at the second meiotic division, after the ova has been fertilized by a C57BL/6 sperm bearing a Y chromosome. These observations confirm the influence of the sperm in the segregation of chromatids during female meiosis, and indicate that a locus or loci on the Y chromosome are involved in this instance of meiotic drive.  相似文献   

17.
18.
19.
The Transmission Disequilibrium Test (TDT) compares frequencies of transmission of two alleles from heterozygote parents to an affected offspring. This test requires all genotypes to be known from all members of the nuclear families. However, obtaining all genotypes in a study might not be possible for some families, in which case, a data set results in missing genotypes. There are many techniques of handling missing genotypes in parents but only a few in offspring. The robust TDT (rTDT) is one of the methods that handles missing genotypes for all members of nuclear families [with one affected offspring]. Even though all family members can be imputed, the rTDT is a conservative test with low power. We propose a new method, Mendelian Inheritance TDT (MITDT-ONE), that controls type I error and has high power. The MITDT-ONE uses Mendelian Inheritance properties, and takes population frequencies of the disease allele and marker allele into account in the rTDT method. One of the advantages of using the MITDT-ONE is that the MITDT-ONE can identify additional significant genes that are not found by the rTDT. We demonstrate the performances of both tests along with Sib-TDT (S-TDT) in Monte Carlo simulation studies. Moreover, we apply our method to the type 1 diabetes data from the Warren families in the United Kingdom to identify significant genes that are related to type 1 diabetes.  相似文献   

20.
In many animals, including humans, interactions with caring parents can have long-lasting effects on offspring sensitivity to stressors. However, whether these parental effects impact offspring fitness in nature is often unclear. In addition, despite evidence that maternal care can influence offspring behaviour via epigenetic alterations to the genome, it remains unclear whether paternal care has similar effects. Here, we show in three-spined sticklebacks, a fish in which fathers are the sole provider of offspring care, that the direct care provided by fathers affects offspring anxiety and the potential for epigenetic alterations to the offspring genome. We find that families are differentially vulnerable to early stress and fathers can compensate for this differential sensitivity with the quality of their care. This variation in paternal care is also linked to the expression in offspring brains of a DNA methyltransferase (Dnmt3a) responsible for de novo methylation. We show that these paternal effects are potentially adaptive and anxious offspring are unlikely to survive an encounter with a predator. By supplying offspring care, fathers reduce offspring anxiety thereby increasing the survival of their offspring—not in the traditional sense through resource provisioning but through an epigenetic effect on offspring behavioural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号