首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin-V imaging for noninvasive detection of cardiac allograft rejection.   总被引:19,自引:0,他引:19  
Heart transplant rejection is characterized pathologically by myocyte necrosis and apoptosis associated with interstitial mononuclear cell infiltration. Any one of these components can be targeted for noninvasive detection of transplant rejection. During apoptotic cell death, phosphatidylserine, a phospholipid that is normally confined to the inner leaflet of cell membrane bilayer, gets exteriorized. Technetium-99m-labeled annexin-V, an endogenous protein that has high affinity for binding to phosphatidylserine, has been administered intravenously for noninvasive identification of apoptotic cell death. In the present study of 18 cardiac allograft recipients, 13 patients had negative and five had positive myocardial uptake of annexin. These latter five demonstrated at least moderate transplant rejection and caspase-3 staining, suggesting apoptosis in their biopsy specimens. This study reveals the clinical feasibility and safety of annexin-V imaging for noninvasive detection of transplant rejection by targeting cell membrane phospholipid alterations that are commonly associated with the process of apoptosis.  相似文献   

2.
Reverse-mode activation of the Na+/Ca2+ exchanger (NCX) during reperfusion following ischemia contributes to Ca2+ overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP + channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP + blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p < 0.05 vs. control group), 28.6 ± 3.3 % in the KB-R7943 group (p < 0.05 vs. cholesterol control group), 44 ± 5 % in the KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p < 0.05 vs. control group). Further, KB-R7943 attenuated the magnitude of cell apoptosis (p < 0.05 vs. cholesterol control group). These beneficial effects were abolished by glibenclamide. In conclusion, diet-induced hypercholesterolemia enhances myocardial injury. Selective reverse-mode NCX inhibitor KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP + channels.  相似文献   

3.
We examined whether KB-R7943 reduced infarct size by attenuating apoptosis during reperfusion and also compared antiapoptotic effects of KB-R7943 and IPost. For this purpose, isolated rat hearts underwent 30-min global ischemia and 120-min reperfusion. Ischemic postconditioning (IPost) (n?=?15; three cycles of 10-s reperfusion/10-s ischemia or three cycles of 30-s reperfusion/30-s ischemia) and KB-R7943 (n?=?15; 1???M KB-R at the onset of reperfusion or before ischemia) were compared with controls (n?=?12; ischemia?Creperfusion only). Myocardial injury was determined by TTC staining, TUNEL assay and caspase-3 activity. AKT and eNOS phosphorylation were measured by immunoblotting. We found that IPost (10?s), Pre KB-R, and Reperf KB-R reduced infarct size (29?±?4.1, 35?±?5.0, 28.6?±?3.4?%, respectively, vs. controls 46?±?8.7?%; P?<?0.05) and attenuated cell apoptosis (TUNEL-positive cardiomyocyte nuclei) in the myocardium (P?<?0.01). Moreover, IPost (10?s), Pre KB-R and Reperf KB-R significantly decreased caspase-3 activation caused by myocardial ischemia?Creperfusion. However, IPost (30?s) did not show any effect on necrosis and apoptosis. Akt, eNOS phosphorylation, at 30?min of reperfusion/IPost-10?s was significantly higher than other groups. In conclusion, KB-R7943 was as effective as IPost in reducing necrosis and inhibiting apoptosis and it might be an ideal pharmacological agent to provide a more amenable approach to cardioprotection.  相似文献   

4.
We report a novel real-time imaging model to visualize apoptotic membrane changes of single cardiomyocytes in the injured heart of the living mouse, using fluorescent labeled annexin-V. Annexin-V binds to externalized phosphatidylserine (PS) of cells undergoing programmed cell death. With high-magnification (x100-160) real-time imaging, we visualized the binding of annexin-V to single cardiomyocytes. Kinetic studies at the single-cell level revealed that cardiomyocytes started to bind annexin-V within minutes after reperfusion, following an ischemic period of 30 minutes. The amount of bound annexin-V increased rapidly and reached a maximum within 20-25 minutes. Caspase inhibitors decreased the number of annexin-V-positive cardiomyocytes and slowed down the rate of PS exposure of cardiomyocytes that still bound annexin-V. This technology to study cell biology in the natural environment will enhance knowledge of intracellular signaling pathways relevant for cell-death regulation and strategies to manipulate these pathways for therapeutic effect.  相似文献   

5.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

6.
One of the main pathological symptoms of early diabetic retinal neuropathy is retina neuronal apoptosis. In the present work we investigated the effects of indoleamine hormone melatonin, a powerful free radical scavenger, on streptozotocin-induced retina neuronal cell apoptosis in high blood glucose rat. After melatonin treatment (10 mg/kg/day), tunel detection was used to monitor the apoptosis rate of neurons in the retinal ganglion cell layer; reversed quantitative PCR was used to measure the mRNA expression of retinal caspase-3, Mn superoxidase dismutase (SOD) and Cu–Zn SOD; and the activities of total SOD (T-SOD) and sub-type SOD was detected using xanthine oxidase enzymatic detection. Our data showed that melatonin treatment leads to a decrease of retinal cell apoptosis and the apoptotic index was (1.67 ± 0.54) % and (7.73 ± 0.95) % at 8 and 12 weeks after treatment. The relative quantitative (RQ) value for caspase-3 mRNA expression was (6.996 ± 1.192) and (7.267 ± 1.178) in melatonin group, which are much lower than the values of diabetic group (12.566 ± 2.272 and (14.297 ± 2.110) at 8 and 12 weeks, respectively) under the same condition. mRNA expression of Mn SOD and Cu–Zn SOD as well as their activities all decreased in the diabetic group compared with the control group. While melatonin treatment induced the expression of Mn SOD mRNA and a continual increase of Mn SOD activity as well as the activity and mRNA expression of Cu–Zn SOD at 12 weeks. Therefore, our results demonstrate that melatonin treatment prevented the decrease in mRNA expression of SOD and the increase in caspase-3 mRNA expression induced by diabetes thus exerts a beneficial effect on retina neuronal apoptosis.  相似文献   

7.
Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia–reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential. Especially the binding of HK to mitochondria and prevention of HK solubilisation (HK detachment from mitochondria) during ischemia confers cardioprotection. It is unknown whether diabetes affects HK localisation during IR and IPC as compared to non-diabetes. In this study we hypothesize that DM alters cellular trafficking of hexokinase in response to IR and IPC, possibly explaining the altered response to IR and IPC in diabetic heart. Control (CON) and type I diabetic (DM) rat hearts (65 mg/kg streptozotocin, 4 weeks) were isolated and perfused in Langendorff-mode and subjected to 35 min I and 30 min R with or without IPC (3 times 5 min I). Cytosolic and mitochondrial fractions were obtained at (1) baseline, i.e. after IPC but before I, (2) 35 min I, (3) 5 min R and (4) 30 min R. DM improved rate-pressure product recovery (RPP; 71 ± 10 % baseline (DM) versus 9 ± 1 % baseline (CON) and decreased contracture (end-diastolic pressure: 24 ± 8 mmHg (DM) vs 77 ± 4 mmHg (CON)) after IR as compared to control, and was associated with prevention of HK solubilisation at 35 min I. IPC improved cardiac function in CON but not in DM hearts. IPC in CON prevented HK solubilisation at 35 min I and at 5 min R, with a trend for increased mitochondrial HK. In contrast, the non-effective IPC in DM was associated with solubilisation of HK and decreased mitochondrial HK at early reperfusion and a reciprocal behaviour at late reperfusion. We conclude that type I DM significantly altered cellular HK translocation patterns in the heart in response to IR and IPC, possibly explaining altered response to IR and IPC in diabetes.  相似文献   

8.
目的:探讨表没食子酸酯(EGCG)对体外培养的人晶状体上皮(human lens epithelial,HLE)细胞氧化损伤的保护作用及可能机制。方法:HLE细胞传代培养,分为阴性对照组:以正常培养液培养;氧化损伤组:100μmol·L~(-1)的H_2O_2作用12 h;EGCG低浓度组:10μmol·L~(-1)EGCG孵育24 h后,加入H_2O_2作用12 h;EGCG高浓度组:100μmol·L~(-1)EGCG孵育24 h后,加入H_2O_2作用12 h。MTT比色法检测细胞活力,流式细胞仪检测细胞凋亡率,Hochest33258染色观察凋亡细胞形态,比色法检测凋亡相关因子caspses-3及caspase-9的表达。结果:EGCG能明显抑制H_2O_2诱导的HLE细胞活力的下降,用不同浓度EGCG处理后,HLE细胞活性分别提高到51.00%±2.37%和63.67%±2.29%,与氧化损伤组(40.33%±2.86%)比较差异具有统计学意义(P0.05);经不同浓度EGCG处理后,HLE细胞凋亡率分别下降至33.33±3.12%和22.80±1.67%,与氧化损伤组(43.03±2.43%)比较差异具有统计学意义(P0.05);此外,EGCG还能明显减少H_2O_2所致HLE细胞内caspses-3及caspase-9的表达。结论:EGCG通过抑制caspses-3及caspase-9的表达有效抑制了H_2O_2对HLE细胞的损伤,从而为其用于治疗HLE细胞损伤提供可靠的实验依据。  相似文献   

9.
Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30–50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours) and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time). Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM). The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05). The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05). The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats.  相似文献   

10.
Circumstantial evidence frequently implicates oxygen-derived free radicals and oxidative stress as mediators of myocardial ischemia/reperfusion (I/R) injury. Therefore, external supplementation of natural antioxidants plays a main role as cardioprotective compounds. This study was designed to evaluate the cardioprotective effect of VitaePro (70 mg/kg body weight, 21 days), a novel antioxidant mix of astaxanthin, lutein and zeaxanthin in a rat ex vivo model of ischemia/reperfusion injury. The cardioprotective effect of VitaePro was also compared with vitamin E (70 mg/kg body weight, 21 days) treatment. Rats were randomized into control I/R (CIR), VitaePro I/R (VPIR) and Vitamin E I/R (VEIR). After 21 days of oral treatment, isolated hearts from each group were subjected to 30 min of ischemia followed by 2 h of reperfusion. In the VPIR group compared to CIR and VEIR groups at 2 h of reperfusion, increased left ventricular functional recovery, such as left ventricular developed pressure (92.7 ± 0.7 vs. 85.3 ± 0.3 and 89.4 ± 1.2 mm Hg), dp/dt max (2518.7 ± 77.9 vs. 1962.5 ± 24 and 2255.7 ± 126.6 mm Hg/s), and aortic flow (21.5 ± 1.36 vs. 4.4 ± 0.6 and 13.2 ± 1.02 ml/min) were observed. The infarct size (27.68 ± 1.7 vs. 45.4 ± 1.8 and 35.4 ± 0.6%), apoptotic cardiomyocytes (61.7 ± 10.6 vs. 194.1 ± 14.8 and 118.7 ± 15.4 counts/100 HPF) and thiobarbituric acid reactive substances levels (80 ± 3 vs. 127 ± 5 and 103 ± 2 nM/mg tissue) also were decreased in VPIR group when compared to CIR and VEIR. As evidenced by the data, administration of vitamin E offered substantial cardioprotection to I/R injury, but VitaePro enhanced cardioprotection significantly more than vitamin E treatment. Taken in concert, the results of this study suggests that the oral ingestion of VitaePro protects myocardium from ischemia/reperfusion injury by decreasing oxidative stress and apoptosis, which may be of therapeutic benefit in the treatment of cardiovascular complications. However, further in vivo animal and human intervention studies are warranted before establishing any recommendations about usage of VitaePro for human cardiovascular complications.  相似文献   

11.
Stroke is a disease that affects the blood vessels that supply blood to the brain. Although platelets are implicated in the pathophysiology of stroke the mechanism is still not clear and there antiplatelet agents available for the prevention and treatment of stroke. We herein examined the relationship between the potential cytokine, TNF-α platelet activation and apoptosis in acute ischemic stroke patients. We selected 60 patients (mean age 57.9 ± 10.2 years) who had not taken any antiplatelet drugs for 14 days. A group of 45 participants (mean age 51.05 ± 9.07 years) were selected as the control group. For both the patients and for the control group, P-selectin (CD62p) and Annexin-V binding, cytochrome-c levels, caspase-3 gene expression and caspase-3 releasing and plasma TNF-α levels were measured in platelets. The results showed significant increase in plasma TNF-α and platelet Annexin-V, CD62p, cytochrome-c and caspase-3 gene expression in stroke patients compared to the control group. The data of this work suggests that inflammation may have a role in platelet apoptosis in stroke which may suggest a new aspect of the role of inflammation in the development of acute ischemic stroke.  相似文献   

12.
The present study examined kinetics of apoptosis and expression of apoptosis-related proteins Bcl-2, Bax, and caspase-3 in the CA3 hippocampus cells after diffuse brain injury (DBI) induced experimentally in rats. Percentage of apoptotic cells and expressions of above proteins were examined by flow cytometry and immunohistochemistry. Substantial neuronal apoptosis was documented in the CA3 hippocampus cells after DBI (22.26 ± 2.97 % at 72 h after DBI vs. 2.92 ± 0.88 % in sham-operated animals). Expression of Bc1-2 decreased, while expression of Bax and caspase-3 increased after DBI, with caspase-3 expression peaking after that of Bax (72 vs. 48 h, respectively). Further, the Bc1-2/Bax expression ratio decreased prior to increase of caspase-3 expression. In conclusion, cell apoptosis and altered expressions of Bcl-2, Bax, and caspase-3 are present in the CA3 region of hippocampus after experimental DBI. Changes in the Bc1-2/Bax expression ratio may facilitate activation of caspase-3 and aggravate neuronal apoptosis after brain injury.  相似文献   

13.
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A2A adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A2A adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A2A agonist CGS21680 (0.2 μg/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 ± 1.8% and 52.3 ± 2.8% respectively; p < 0.05), with no difference com-pared to the Late group (40.1 ± 6.1%). Apoptosis regressi-on was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFα was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A2A adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

14.
KB-R7943 reduces lethal reperfusion injury under normal conditions, but its effectiveness under certain pathological states is in dispute. In the present study, we sought to determine the effect of KB-R7943 in hyperlipidemic animals and assess if the K ATP + are involved in the protective mechanisms. In group 1 (G1), isolated rat hearts underwent 25 min global ischemia (GI) and 120 min reperfusion (R). In group 2 (G2), G1 was repeated but the animals were subjected to a 1.5 % cholesterol-enriched diet during 6 weeks (hypercholesterolemic animals). In group 3 (G3), G2 was repeated but 1 μM KB-R7943 was added to the perfusate for 10 min from the start of reperfusion. In group 4 (G4), G3 was repeated, and glibenclamide (K ATP + , blocker, 0.3 μM) was administered. The infarct size was measured by triphenyltetrazolium. The infarct size was 35 ± 5.0 % in G1 and 46 ± 8.7 % in G2 (P < 0.05); KB-R7943 reduced the infarct size (28.6 ± 3.3 % in G3 vs. G2, P < 0.05). In addition, KB-R7943 attenuated apoptotic cell (G3 vs. G2, P < 0.05), but glibenclamide abolished the effect reached by KB-R7943. Thus, diet-induced hypercholesterolemia enhances myocardial injury; KB-R7943 reduces infarct size and apoptosis in hyperlipidemic animals through the activation of K+ATP channels.  相似文献   

15.
Deficiency of alpha-1-antitrypsin (α1-AT, a major protease inhibitor controlling tissue degradation) is a genetic disorder transmitted in a codominant autosomal form. It has more than 100 genetically determined variants. This study attempted to determine the degree of association between serum α1-AT levels and phenotypes and to provide a strategy for reliable laboratory evaluation of deficiencies. The study group consisted of a 38-year-old male proband with clinical features of emphysema, his first-degree relatives, and healthy controls. Family history revealed a four-generation pedigree. Genomic DNA was isolated from peripheral blood leukocytes. Alpha-1-AT levels were determined from human serum by immunonephelometry. Phenotypes were determined by isoelectric focusing of blood samples. DNA sequences of coding exons were analyzed by the amplification DNA technique and direct sequencing. Inheritance and plasma levels of the ZZ, MM, M3S, and MZ phenotypes were confirmed by the family study. In the family members with deficiencies, plasma concentrations were 22.55% ± 5.15 (ZZ), 84.18% ± 5.18 (M3S), and 61.06% ± 7.15 (MZ) of the normal MM level. We found a close association between α1-AT level and genotype. A combination of genotyping, quantification, and phenotyping is the optimal strategy for the laboratory evaluation of α1-AT deficiency.  相似文献   

16.
The Bax, cyt-c and caspase-3 proteins play an important role in regulating the myocardial apoptosis. Although very little is known about the specific signal pathways modulated by Ginkgo biloba extract (GBE), it seems advisable to suppose that GBE-induced antiapoptotic effect might be attributed to the regulation of the expression of these proteins. Our aim was to investigate whether GBE could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. In the myocardium ischemia reperfusion (IR) rat model, treatment of GBE (400 mg/kg) significantly decreased the cardiomyocyte cell apoptosis and myocardium infarction. Immunohistochemical analysis showed that GBE significantly inhibited I/R-induced increase of myocardial Bax, caspase-3, and cyt-c proteins expression. Western blot analysis confirmed results of immunohistochemical analysis. It is most likely that multiple pathways are involved in IR-induced apoptosis in rat myocardium cells. Therefore, these results demonstrate that GBE exhibits significant protective effect against myocardial I/R injury in rat heart, which is related to down-regulate Bax, cyt-c and caspase-3. Bcl-2 overexpression might prevent IR-induced apoptosis by inhibiting cytochrome c release from the mitochondria and block activation of caspase-3.  相似文献   

17.
We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague–Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure.  相似文献   

18.
Plant lycopene exhibits antioxidant activity in animal tissues. Transient cerebral ischemia/reperfusion in Mongolian gerbils resulted in delayed neuronal death in hippocampal regions. We examined the antioxidant effects of lycopene because we expected lycopene to attenuate ischemia-related neuronal damage by controlling apoptosis at the gene level. The gerbils were divided into two groups: the normal feeding (control) group that received normal market food (MF) and the lycopene group that received MF containing lycopene (5 mg in 100 g MF food). After 1.5–2.0 months (when body weight were 60–65 g), the lycopene level was 38.2 ± 17.6 ng/ml in serum and 11.9 ± 4.0 μg/g-wet weight tissue in the liver. Levels of B cell leukemia-2, an apoptosis-suppressing protein, decreased in control animal brains 1, 3, and 7 days after surgery, whereas the levels increased in lycopene-treated animal brains. Moreover, cysteinyl aspartate-specific protease-3 activity increased gradually after ischemia, but was suppressed in the lycopene-treated animal brains 7 days after surgery. Finally, hippocampal superoxide dismutase (SOD) activity decreased in the control group 3 h after ischemia and, gradually increased thereafter, whereas it was significantly elevated in the lycopene group. Thus, orally administered lycopene is accumulated in the body, and provided protections against ischemia/reperfusion-induced brain injury by inducing an increase in SOD activity and inhibiting apoptosis.  相似文献   

19.
Neuritin is an extracellular glycophosphatidylinositol-linked protein that promotes neuronal survival, differentiation, function, and repair, but the exact mechanism of this neuroprotective effect remains unclear. Meanwhile, endoplasmic reticulum stress (ERS) induced apoptosis is attracting increased attention. In this work, we hypothesized that neuritin inhibited ERS to protect cortical neurons. To check this hypothesis, we exposed primary cultured cortical neurons to oxygen and glucose deprivation (OGD) for 45 min followed by reperfusion (R) to activate ERS. We then performed resuscitation for 6, 12, 24, and 48 h. ERS-related factors such as glucose-regulated protein 78 (GRP78), caspase-12 and CHOP were detected by Western blotting and quantitative real-time polymerase chain reaction assay. Apoptosis was assessed by Annexin V binding and propidium iodide staining. Ultrastructural changes of endoplasmic reticulum were observed under a transmission electron microscope. Results showed that GRP78 expression significantly increased at 12, 24, and 48 h and peaked at 24 h. Caspase-12 and CHOP expression significantly increased in a time-dependent manner at 12, 24, and 48 h. GRP78, caspase-12 and CHOP expression as well as apoptosis rate of primary cultured neurons and the ultrastructural changes of endoplasmic reticulum in the OGD/R?+?neuritin group significantly improved compared with the OGD/R group. In conclusion, the neuroprotection function of neuritin may be involved in ERS pathways.  相似文献   

20.
We investigated the effect of exercise in the heat on both intracellular and extracellular Hsp72 in athletes with a prior history of exertional heat illness (EHI). Two groups of runners, one consisting of athletes who had a previous history of EHI, and a control group (CON) of similar age (29.7 ± 1.2 and 29.1 ± 2 years CON vs. EHI) and fitness [maximal oxygen consumption $(\dot V{{\text{O}}_2}\hbox{max} )$ 65.7 ± 2 and 64.5 ± 3 ml kg?1 min?1 CON vs. EHI] were recruited. Seven subjects in each group ran on a treadmill for 1 h at 72 % $\dot V{{\text{O}}_2}\hbox{max}$ in warm conditions (30 °C, 40 % RH) reaching rectal temperatures of ~39.3 (CON) and ~39.2 °C (EHI). Blood was collected every 10 min during exercise and plasma was analysed for extracellular Hsp72. Intracellular Hsp72 levels were measured in both monocytes and lymphocytes before and immediately after the 60-min run, and then after 1 h recovery at an ambient temperature of 24 °C. Plasma Hsp72 increased from 1.18 ± 0.14 and 0.86 ± 0.08 ng/ml (CON vs. EHI) at rest to 4.56 ± 0.63 and 4.04 ± 0.45 ng/ml (CON vs. EHI, respectively) at the end of exercise (p < 0.001), with no difference between groups. Lymphocyte Hsp72 was lower in the EHI group at 60 min of exercise (p < 0.05), while monocyte Hsp72 was not different between groups. The results of the present study suggest that the plasma Hsp72 response to exercise in athletes with a prior history of EHI remained similar to that of the CON group, while the lymphocyte Hsp72 response was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号