首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Early morphological studies regarding the evolutionary history of elasmobranchs suggested sharks and batoids (skates and rays) were respectively monophyletic. More modern morphological cladistic studies, however, have tended to suggest that batoids are derived sharks, closely related to sawsharks and angelsharks, a phylogenetic arrangement known as the Hypnosqualea hypothesis. Very few molecular studies addressing interordinal relationships of elasmobranchs have been published; the few that do exist, are very limited in terms of both taxon representation and/or aligned sequence positions, and are insufficient to answer the question of whether batoids are derived sharks. The purpose of this study was to address this issue with more complete taxon representation, concomitant with a reasonable number of aligned sequence positions. The data set included a 2.4-kb segment of the mitochondrial 12S rRNA-tRNA valine-16S rRNA locus, and in terms of taxa, representatives of two orders of Batoidea, at least one representative of all orders of sharks, and as an outgroup, the widely recognized sister group to elasmobranchs-Holocephali. The results provide the first convincing molecular evidence for shark monophyly and the rejection of the Hypnosqualea hypothesis. Our phylogenetic placement of batoids as a basal elasmobranch lineage means that much of the current thinking regarding the evolution of morphological and life history characteristics in elasmobranchs needs to be re-evaluated.  相似文献   

2.
The dominant view of the phylogeny of living elasmobranchs, based on morphological characters, is that batoids (skates and rays) are derived sharks, joined with saw sharks, and angel sharks in the clade Hypnosqualea [S. Shirai, Squalean Phylogeny: A New Framework of 'Squaloid' Sharks and Related Taxa, Hokkaido University Press, Sapporo, 1992]. By contrast, a recent molecular-phylogenetic study based on mitochondrial genes for 12S and 16S rRNA and tRNA valine [C.J. Douady et al., Mol. Phylogenet. Evol., 26 (2003) 215-221] supported the older view that batoids and sharks are separate lineages. Here, we tested these two different views using combined, nuclear large-subunit and small-subunit rRNA gene sequences ( approximately 5.3kb) from 22 elasmobranchs, two chimeras, and two bony fishes. We used maximum likelihood, maximum parsimony, minimum evolution, and Bayesian inference for tree reconstruction, and found the large-subunit rRNA gene to contain far more signal than the small-subunit gene for resolving this mostly Mesozoic radiation. Our findings matched those of in separating batoids from sharks and in statistically rejecting Hypnosqualea. The angel shark (Squatina) was the sister group to squaliforms (dogfish sharks), and our findings are consistent with the idea that "orbitostylic" sharks form a monophyletic group (squaliforms+the hexanchiform Chlamydoselachus+Squatina+Pristiophorus). In the galeomorph sharks, however, lamniforms grouped with orectolobiforms, opposing the widely accepted 'lamniform+carcharhiniform' grouping. A tree based on the mitochondrial gene for cytochrome b also supported a separation of sharks and batoids, in contrast to Hypnosqualea. Among elasmobranchs, variation in the evolutionary rates of the nuclear rRNA genes was higher than that of cytochrome b genes, mainly due to the relatively rapid evolution of rRNA in some carcharhiniforms. In conclusion, several different molecular studies now refute the Hypnosqualea hypothesis of elasmobranch interrelationships.  相似文献   

3.
Higher elasmobranch phylogeny and biostratigraphy   总被引:1,自引:0,他引:1  
Living sharks, skates and rays share several derived skeletal characters that are absent in most extinct elasmobranchs, suggesting a monophyletic group of 'higher' elasmobranchs. Within this group opinions vary as to phylogenetic relationships, although three broad groups are generally recognized. Arguments for and against monophyly of these group (batoids; squalomorphs; galeomorphs) are examined. Many of their contained taxa are also of questionable validity. Cladistic analysis of living galeomorphs reveals a sequence of characters supporting monophyly of the group as whole, but not of its more generalized contained taxa. The temporal distribution of fossil galeomorphs corroborates the hypothesis of relationship suggested by neontological data; i.e. there is considerable stratigraphic harmony with Recent phylogenetic data.  相似文献   

4.
Parasite species richness is a fundamental characteristic of host species and varies substantially among host communities. Hypotheses aiming to explain observed patterns of richness are numerous, and none is universal. In this study, we use tapeworm parasites of elasmobranch fishes to examine the phylogenetic and environmental influences on the variation in species richness for this specific system. Tapeworms are the most diverse group of helminths to infect elasmobranchs. Elasmobranchs are cosmopolitan in distribution and their tapeworm parasites are remarkably host specific; therefore, making this an ideal system in which to examine global patterns in species diversity. Here, we 1) quantify the tapeworm richness in elasmobranch fishes, 2) identify the host features correlated with tapeworm richness, and 3) determine whether tapeworm richness follows a latitudinal gradient. The individual and combined effects of host size, factors associated with water temperatures (influenced by latitude and depth), host habitat, and type of elasmobranch (shark or batoid) on measures of species diversity were assessed using general linear models. These analyses included tapeworm host records for 317 different elasmobranch species (124 species were included in our analyses) and were conducted with and without taking into account phylogenetic relationships between host species. Since sharks and batoids differ substantially in body form, analyses were repeated for each host subset. On average, batoids harboured significantly more tapeworm species than shark hosts. Tapeworm richness in sharks was influenced by median depth, whereas no predictor variable included in our models could adequately account for interspecific variation in tapeworm richness in batoid hosts. The taxonomic diversity of tapeworm assemblages of sharks and batoids was influenced by median depth and median latitude, respectively. When the influence of host phylogeny is accounted for, larger hosts harbour a greater tapeworm richness, whereas hosts exploiting wider latitudinal ranges harbour more taxonomically distinct tapeworm assemblages. Species richness and taxonomic diversity of tapeworm assemblages in elasmobranch fishes are influenced by different evolutionary pressures, including host phylogenetic relationships, space constraints and geographical area. Our results suggest that ca 3600 tapeworm species have yet to be described from elasmobranch fishes.  相似文献   

5.
Many studies on elasmobranchs, sharks and batoids (rays, skates and guitarfishes), have focused on the factors responsible for biomass decline, but little attention has been paid to the factors that affect species richness. We used the software package ModestR to determine the geographical distribution of all valid marine elasmobranch species (512 species of sharks and 619 species of batoids), thereby making it possible to determine the species composition of the elasmobranch community in any area worldwide. The primary aim of this study was to identify the factors associated with the species richness of elasmobranchs. The data were analyzed using multiple regressions and Support Vector Machine (SVM) in cells of 1º× 1º with the analyzed abiotic variables being bathymetry, chlorophyll a, sea surface temperature, photosynthetically available radiation, pH, cloud cover, the concentrations of calcite, silicate, phosphate and nitrate, salinity, particulate organic carbon, diffuse attenuation and dissolved oxygen. The mean area of occupancy of the species was used as an indicator of niche occupancy. The model performed with SVM explained 97 and 99 % of the variance observed in the species richness of batoids and sharks, respectively. Mean area of occupancy, temperature and bathymetry were the variables with a higher contribution to the variance observed in both sharks and batoids. The negative residuals of the model performed with SVM indicated areas with lower than predicted species richness. These may be potential areas with undiscovered and/or unregistered species, or areas with decreased species richness due to the negative effect of anthropogenic factors, i.e. overfishing  相似文献   

6.
Klug, S. (2009). Monophyly, phylogeny and systematic position of the †Synechodontiformes (Chondrichthyes, Neoselachii). — Zoologica Scripta, 39 , 37–49.
Identifying the monophyly and systematic position of extinct sharks is one of the major challenges in reconstructing the phylogeny and evolutionary history of sharks in general. Although great progress has been accomplished in the last few decades with regard to resolving the interrelationships of living sharks, a comprehensive phylogeny identifying the systematic position of problematic or exclusively fossil taxa is still lacking. Fossil taxa traditionally assigned to synechodontiform sharks are very diverse with a fossil record extending back into the Palaeozoic but with uncertain inter- and intrarelationships. Here, phylogenetic analyses using robust cladistic principles are presented for the first time to evaluate the monophyly of this group, their intrarelationships and their systematic position within Neoselachii. According to the results of this study, taxa assigned to this group form a monophyletic clade, the †Synechodontiformes. This group is sister to all living sharks and displays a suite of neoselachian characters. Consequently, the concept of neoselachian systematics needs to be enlarged to include this completely extinct group, which is considered to represent stem-group neoselachians. The origin of modern sharks can be traced back into the Late Permian (250 Mya) based on the fossil record of †Synechodontiformes. The systematic position of batoids remains contradictory, which relates to the use of different data (molecular vs. morphological) in phylogentic analyses.  相似文献   

7.
The Subclass Elasmobranchii is widely considered nowadays to be the sister group of the Subclass Holocephali, although chimaeroid fishes were originally classified as elasmobranchs along with modern sharks and rays. While this modern systematic treatment provides an accurate reflection of the phylogenetic relationships among extant taxa, the classification of many extinct non-holocephalan shark-like chondrichthyans as elasmobranchs is challenged. A revised, apomorphy-based definition of elasmobranchs is presented in which they are considered the equivalent of neoselachians, i.e. a monophyletic group of modern sharks and rays which not only excludes all stem and crown holocephalans, but also many Palaeozoic shark-like chondrichthyans and even close extinct relatives of neoselachians such as hybodonts. The fossil record of elasmobranchs (i.e. neoselachians) is reviewed, focusing not only on their earliest records but also on their subsequent distribution patterns through time. The value and limitations of the fossil record in answering questions about elasmobranch phylogeny are discussed. Extinction is seen as a major factor in shaping early elasmobranch history, especially during the Triassic. Extinctions may also have helped shape modern lamniform diversity, despite uncertainties surrounding the phylogenetic affinities of supposedly extinct clades such as cretoxyrhinids, anacoracids and odontids. Apart from these examples, and the supposed Cretaceous extinction of 'sclerorhynchids', elasmobranch evolution since the Jurassic has mostly involved increased diversification (especially during the Cretaceous). The biogeographical distribution of early elasmobranchs may be obscured by sampling bias, but the earliest records of numerous groups are located within the Tethyan realm. The break-up of Gondwana, and particularly the opening of the South Atlantic Ocean (together with the development of epicontinental seaways across Brazil and Africa during the Cretaceous), provided repeated opportunities for dispersal from both eastern (European) and western (Caribbean) Tethys into newly formed ocean basins.  相似文献   

8.
The organization of the vertebrate cerebellum has been thoroughly studied over the past century, but the function of this structure remains poorly understood. In elasmobranch fishes, the cerebellum displays tremendous variation in size and development although the basic and conservative nature of cerebellar circuitry as seen in other vertebrate taxa is largely retained. Large and morphologically complex cerebelli have evolved independently in both sharks and batoids, and the relative development of this structure in both taxa parallels those of birds and mammals. There are relatively few studies of the physiological role of the cerebellum in generating or shaping behaviors, however, and a convincing explanation of cerebellar hypertrophy in elasmobranchs is lacking. The purpose of this article is to review the current understanding of the structure of the cerebellum in elasmobranch fishes, the physiological responses of cerebellar neurons and the possible role of the cerebellum in behavior. I will also provide a number of hypotheses for future research directions, based upon models that have been suggested by different investigators. These hypotheses include models of cerebellar function as a sensory coincidence detector, a dynamic state estimator and/or a direct modulator of motor programs. Hypotheses concerning the possible organization of cerebellar microcomplexes, the evolution of afferent and efferent cerebellar connections paralleling those observed in mammals and the role of the cerebellum in learning are also suggested.  相似文献   

9.
A working model of the neural control of feeding in elasmobranchs is presented and summarized in graphic form. The model is based on a review of studies in sharks and batoids augmented by suggestions and comparisons from research in mammals and teleosts. The focal point of the model is a proposed Hypothalamic Feeding Area (HFA) that encompasses the medial periventricular zone in the inferior lobe and a small area immediately dorsal to it. Electrical stimulation in the HFA has evoked feeding in nurse sharks and neuropeptides and neurotransmitters known to influence feeding in mammals and teleosts have been localized immunocytochemically in the region in several elasmobranchs. The HFA of elasmobranchs appears to be analogous to and possibly homologous with ??hypothalamic feeding centers?? in bony fishes and tetrapods. Such ??centers?? are thought to integrate external and internal stimuli and control feeding in relation to available energy stores. The HFA??s strong olfactory connections in elasmobranchs are consistent with smell-induced feeding activities. In elasmobranchs, the HFA has reciprocal connections with the central pallium of the telencephalon, a region that processes visual, acoustic, mechanoreceptive and electroreceptive lateral line and possibly somatosensory information. These pathways may provide multisensory control in feeding. HFA connections with the cerebellum, brainstem and spinal cord most likely mediate hypothalamic co-ordination of the sensorimotor components of elasmobranch feeding. The review and model help to identify areas for suggested research.  相似文献   

10.
Modern elasmobranchs have a long evolutionary history and an abundant fossil record that consists mainly of teeth. Many fossil taxa have living representatives. However, the representation of extant taxa in the fossil record is unknown. To begin to understand the geological history of extant elasmobranchs, we here assess the quality of their fossil record. We do so by assessing the Pull of the Recent (POR). The POR can bias the fossil record because the rather complete record of living taxa allows palaeontologists to identify fossil members of the modern clades and to bridge time bins where fossils are absent. We assessed the impact of the POR by quantifying the proportion of extant elasmobranchs that have a fossil record, but do not occur in the last 5 million years (Pliocene and Pleistocene). We found that the POR does not affect orders and families, but it does affect 24% of elasmobranch genera. Within the different elasmobranch orders, the Lamniformes display the most complete generic fossil record, with no impact of the POR. Although modest, the impact of the POR in extant elasmobranch genera is higher than that found in other taxa. Overall, the geological history of elasmobranchs contradicts the usual assumption that the fossil record becomes worse backwards in time. This is the case across geographical regions and tooth size, further suggesting that sampling intensity and outcrop availability might explain the POR effect on sharks and rays.  相似文献   

11.
Shark and ray (elasmobranch) dentitions are well known for their multiple generations of teeth, with isolated teeth being common in the fossil record. However, how the diverse dentitions characteristic of elasmobranchs form is still poorly understood. Data on the development and maintenance of the dental patterning in this major vertebrate group will allow comparisons to other morphologically diverse taxa, including the bony fishes, in order to identify shared pattern characters for the vertebrate dentition as a whole. Data is especially lacking from the Batoidea (skates and rays), hence our objective is to compile data on embryonic and adult batoid tooth development contributing to ordering of the dentition, from cleared and stained specimens and micro-CT scans, with 3D rendered models. We selected species (adult and embryonic) spanning phylogenetically significant batoid clades, such that our observations may raise questions about relationships within the batoids, particularly with respect to current molecular-based analyses. We include developmental data from embryos of recent model organisms Leucoraja erinacea and Raja clavata to evaluate the earliest establishment of the dentition. Characters of the batoid dentition investigated include alternate addition of teeth as offset successional tooth rows (versus single separate files), presence of a symphyseal initiator region (symphyseal tooth present, or absent, but with two parasymphyseal teeth) and a restriction to tooth addition along each jaw reducing the number of tooth families, relative to addition of successor teeth within each family. Our ultimate aim is to understand the shared characters of the batoids, and whether or not these dental characters are shared more broadly within elasmobranchs, by comparing these to dentitions in shark outgroups. These developmental morphological analyses will provide a solid basis to better understand dental evolution in these important vertebrate groups as well as the general plesiomorphic vertebrate dental condition.  相似文献   

12.
13.
Management and conservation actions in marine-protected areas require baselines for monitoring threatened marine fauna such as elasmobranchs. This article provides evidence of the occurrence of 34 species of elasmobranchs (21 sharks and 13 batoids) in the Malpelo Flora and Fauna Sanctuary, Colombia, including five new records of sharks and three of rays. From 1987 to 2021, new records were obtained by underwater visual census using SCUBA, manned submersibles and deep-ocean cameras to depths of up to 2211 m. Of the recorded species, 21 are considered as threatened taxa (64%) by the IUCN, making the Malpelo Flora and Fauna Sanctuary an essential conservation area for this highly threatened group of species.  相似文献   

14.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

15.
Elasmobranchs (sharks, rays, and skates) are currently facing substantial anthropogenic threats, which expose them to acute and chronic stressors that may exceed in severity and/or duration those typically imposed by natural events. To date, the number of directed studies on the response of elasmobranch fishes to acute and chronic stress are greatly exceeded by those related to teleosts. Of the limited number of studies conducted to date, most have centered on sharks; batoids are poorly represented. Like teleosts, sharks exhibit primary and secondary responses to stress that are manifested in their blood biochemistry. The former is characterized by immediate and profound increases in circulating catecholamines and corticosteroids, which are thought to mobilize energy reserves and maintain oxygen supply and osmotic balance. Mediated by these primary responses, the secondary effects of stress in elasmobranchs include hyperglycemia, acidemia resulting from metabolic and respiratory acidoses, and profound disturbances to ionic, osmotic, and fluid volume homeostasis. The nature and magnitude of these secondary effects are species-specific and may be tightly linked to metabolic scope and thermal physiology as well as the type and duration of the stressor. In fishes, acute and chronic stressors can incite a tertiary response, which involves physiological changes at the organismal level, thereby impacting growth rates, reproductive outputs or investments, and disease resistance. Virtually no studies to date have been conducted on the tertiary stress response in elasmobranchs. Given the diversity of elasmobranchs, additional studies that characterize the nature, magnitude, and consequences of physiological stress over a broad spectrum of stressors are essential for the development of conservation measures. Additional studies on the primary, secondary, and tertiary stress response in elasmobranchs are warranted, with particular emphasis on expanding the range of species and stressors examined. Future studies should move beyond simply studying the effects of known stressors and focus on the underlying physiological mechanisms. Such studies should include the coupling of stress indicators with quantifiable aspects of the stressor, which will allow researchers to test hypotheses on survivorship and, ultimately, derive models that effectively link physiology to mortality. Studies of this nature are essential for decision-making that will result in the effective management and conservation of these species.  相似文献   

16.
The Peruvian sea represents one of the most productive ocean ecosystems and possesses one of the largest elasmobranch fisheries in the Pacific Ocean. Ecosystem-based management of these fisheries will require information on the trophic ecology of elasmobranchs. This study aimed to understand the diet, trophic interactions and the role of nine commercial elasmobranch species in northern Peru through the analysis of stomach contents. A total of 865 non-empty stomachs were analysed. Off northern Peru, elasmobranchs function as upper-trophic-level species consuming 78 prey items, predominantly teleosts and cephalopods. Two distinctive trophic assemblages were identified: (a) sharks (smooth hammerhead shark Sphyrna zygaena, thresher shark Alopias spp. and blue shark Prionace glauca) that feed mainly on cephalopods in the pelagic ecosystem; and (b) sharks and batoids (Chilean eagle ray Myliobatis chilensis, humpback smooth-hound Mustelus whitneyi, spotted houndshark Triakis maculata, Pacific guitarfish Pseudobatos planiceps, copper shark Carcharhinus brachyurus and school shark Galeorhinus galeus) that feed mainly on teleosts and invertebrates in the benthonic and pelagic coastal ecosystem. This study reveals for the first time the diet of T. maculata and the importance of elasmobranchs as predators of abundant and commercial species (i.e., jumbo squid Dosidicus gigas and Peruvian anchovy Engraulis ringens). The results of this study can assist in the design of an ecosystem-based management for the northern Peruvian sea and the conservation of these highly exploited, threatened or poorly understood group of predators in one of the most productive marine ecosystems.  相似文献   

17.
Through elasmobranch (sharks and rays) evolutionary history, gigantism evolved multiple times in phylogenetically distant species, some of which are now extinct. Interestingly, the world's largest elasmobranchs display two specializations found never to overlap: filter feeding and mesothermy. The contrasting lifestyles of elasmobranch giants provide an ideal case study to elucidate the evolutionary pathways leading to gigantism in the oceans. Here, we applied a phylogenetic approach to a global dataset of 459 taxa to study the evolution of elasmobranch gigantism. We found that filter feeders and mesotherms deviate from general relationships between trophic level and body size, and exhibit significantly larger sizes than ectothermic‐macropredators. We confirm that filter feeding arose multiple times during the Paleogene, and suggest the possibility of a single origin of mesothermy in the Cretaceous. Together, our results elucidate two main evolutionary pathways that enable gigantism: mesothermic and filter feeding. These pathways were followed by ancestrally large clades and facilitated extreme sizes through specializations for enhancing prey intake. Although a negligible percentage of ectothermic‐macropredators reach gigantic sizes, these species lack such specializations and are correspondingly constrained to the lower limits of gigantism. Importantly, the very adaptive strategies that enabled the evolution of the largest sharks can also confer high extinction susceptibility.  相似文献   

18.
Small‐scale fisheries are generally promoted as a sustainable alternative to large‐scale industrial fisheries. However, there is recent growing evidence that small‐scale fisheries may be the largest threat to marine species of conservation concern. The objective of this study was to evaluate the potential impact of the trammel net fishery on elasmobranchs in the Gulf of Gabès, Southern Tunisia. Data are based on 191 shrimp trammel net set (40 mm stretched mesh size) surveys conducted aboard commercial fishing vessels from May to July 2009. Five species of the small coastal elasmobranchs (Mustelus mustelus (Linnaeus, 1758), Mustelus punctulatus Risso 1827, Dasyatis pastinaca (Linnaeus, 1758), Dasyatis marmorata (Steindachner, 1892) and Torpedo torpedo (Linnaeus, 1758)) and two species from the large coastal shark (Carcharhinus plumbeus (Nardo, 1827) and Carcharhinus brevipinna (Müller & Henle, 1839)) were recognized as by‐catch in this fishery. Elasmobranch by‐catch was dominated by sharks (90.3%), smoothhound sharks Mustelus sp. being by far the most important (88.9%) and reflecting their abundance in the area; 58% of the sets caught at least one specimen, with 4.8 ± 1.3 caught per set. Captures were composed essentially of neonate and juvenile sharks, while the batoids were dominated by mature individuals. This study shows that shrimp trammel nets represent a considerable source of mortality for early life stages of elasmobranch species in the Gulf of Gabès. Additionally, there was a high density of neonates and small juvenile M. mustelus in the Sfax zone, suggesting that these nearshore waters are a nursery grounds for smoothhound sharks. Further research should focus on the incidents of by‐catch and evaluate the potential solutions to allow trammel net fisheries to coexist alongside the elasmobranch species.  相似文献   

19.
This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates and vertebrates) and of gnathostomes (chondrichthyans, lungfishes, coelacanth, actinopterygians, amphibians, and amniotes), partly because tunicates and lungfishes are rogue taxa that disrupt the tree. Nonetheless, parametric bootstrapping showed our RNA-gene data are only consistent with these dominant hypotheses: (1) deuterostomes consist of Ambulacraria plus Chordata, with Chordata consisting of tunicates and 'vertebrates plus cephalochordates'; and (2) lungfishes are the closest living relatives of tetrapods.  相似文献   

20.
The feeding habits of the sand tiger shark Carcharias taurus , one of the most threatened sharks of the world, are poorly known. Sand tiger sharks are critically endangered in the South-west Atlantic. Since 2007, the law requires that all individuals caught in recreational fisheries off Argentina must be released. Using data from a north Patagonian recreational fishery ( n =164 stomachs with contents), we analyzed the diet of sand tiger sharks in relation with size, sex, maturity stage and season; assessed prey consumption patterns and hooking location; and estimated diet overlap with fishery landings. Sand tiger sharks consumed mainly teleosts (55.4% of the total prey number, N ) and elasmobranchs (41.84% N ), and ate more benthic elasmobranchs (batoids and angel sharks) as they become larger. Sharks swallowed prey mostly in one piece (93.7%) and were hooked mainly in internal organs (87.4%, n =175), causing occlusion and perforation of the esophagus and stomach, and lacerations to the pericardium, heart and liver. Sand tiger sharks fed on the most heavily landed species, overlapping almost completely (>90%) with fishery landings. Conservation plans should take into account that releasing hooked sharks could be insufficient to minimize fishing mortality and that competition for food with fisheries is likely to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号