首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Lathyrus includes a number of neglected wild relatives of pea with potential as genetic resources for acquisition of stress resistance traits, but, due to little breeding, genotypes under culture are mainly landraces and seldom true varieties. Development of in vitro approaches for Lathyrus is also limited, and assessments of nuclear DNA content, for taxonomical or breeding purposes, are sparse. Genome size and AT/GC ratio were determined by flow cytometry, allowing for distinction between protein and forage L. sativus, L. cicera, L. ochrus and L. clymenum and the ornamental sweet pea (L. odoratus), and also between landraces within L. sativus L. and L. cicera L. In addition, explants from in vitro seedlings of eight genotypes from the five Lathyrus species above were cultivated in vitro, plant regeneration was achieved for all landraces and species, and the nuclear DNA content of the regenerants was compared with that of their mother plants, whereby the true-to-typeness of such regenerants was confirmed.  相似文献   

2.

Background

The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion.

Scope

In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera.

Conclusions

Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species.  相似文献   

3.
The transferability of genome-specific sequence tagged microsatellite site (STMS) primers from field pea (P. sativum) and chickpea (C. arietinum) to other major pulses was examined. Overall, field pea STMS primers amplified products in most of the accessions in comparison to that of the chickpea STMS primers, which amplified products in relatively few accessions. The highest level of successful amplifications with a single primer was 89% for field pea and 33% for chickpea primers respectively. The potential transferability of the STMS primers among species, expressed as the total mean percentage of positive amplifications, was 53% for the field pea STMS primers and 9% for the chickpea STMS primers. The individual mean percentage of successful transferability of field pea STMS primers across lentil, vetch and chickpea/Cicer sp. accessions was 60%, 39% and 62%, respectively. Whereas, for the chickpea STMS primers successful transferability was 5%, 3% and 18% for lentil, vetch and field pea, respectively. The trnasferability of these STMS primers indicates a high level of sequence conservation in these regions across species. Together with their locus-specificity, co-dominant nature and potential to amplify multiple alleles, their transferability makes STMS markers a powerful tool for genetic mapping, diversity analysis and genotyping.  相似文献   

4.
European hazelnut (Corylus avellana L.), cultivated in several areas of the world including Europe, Anatolia, and the USA, is an economically important nut crop due to its high mineral, oleic acid, amino acid, and phenolic compound content and pleasant flavor. This study examined molecular genetic diversity and population structure of 54 wild accessions and 48 cultivars from the Slovenian national hazelnut collection using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Eleven AFLP primer combinations and 49 SSR markers yielded 532 and 504 polymorphic fragments, respectively. As expected for a wind-pollinated, self-incompatible species, levels of genetic diversity were high with cultivars and wild accessions having mean dissimilarity values of 0.50 and 0.60, respectively. In general, cultivars and wild accessions clustered separately in dendrogram, principal coordinate, and population structure analyses with regional clustering of the wild material. The accessions were also characterized for ten nut and seven kernel traits and some wild accessions were shown to have breeding potential. Morphological principal component analysis showed distinct clustering of cultivars and wild accessions. An association mapping panel composed of 64 hazelnut cultivars and wild accessions had considerable variation for the nut and kernel quality traits. Morphological and molecular data were associated to identify markers controlling the traits. In all, 49 SSR markers were significantly associated with nut and kernel traits [P < 0.0001 and LD value (r 2) = 0.15–0.50]. This work is the first use of association mapping in hazelnut and has identified molecular markers associated with important quality parameters in this important nut crop.  相似文献   

5.
6.
Lathyrus L. is an important genus contributing in human food, animal feed and fodder. The genetic variation is studied among and within six species sampled over a large geographical area: Lathyrus cicera, Lathyrus sativus, Lathyrus sylvestris, Lathyrus tuberosus, Lathyrus ochrus and Lathyrus aphaca. The phylogenetic relationship among these species was assessed using sequences of chloroplast DNA trnH-psbA (intergenic spacer). The highly polymorphic spacer' length was 330 bp. The phylogenetic analyses using Maximum Parsimony and Genetic Distances, agreed with the universal taxonomy of Kupicha. L. sativus and L. cicera could be considered as sister species, sharing a common ancestor.  相似文献   

7.
Kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) are valuable fibre crop species with diverse end use. Phylogenetic relationship of 73 accessions of kenaf, roselle and their wild relatives from 15 countries was assessed using 44 inter-simple sequence repeat (ISSR) and jute (Corchorus olitorius L.) specific simple sequence repeats (SSR) markers. A total of 113 alleles were identified of which 61.95 % were polymorphic. Jute specific SSR markers exhibited high polymorphism and resolving power in kenaf, although ISSR markers exhibited higher resolving power than SSR markers. Number of polymorphic alleles varied from 1 to 5 for ISSR and 1 to 6 for SSR markers. Cultivated species exhibited higher allele polymorphism (57 %) than the wild species (35 %), but the improved cultivars exhibited lower genetic diversity compared to germplasm accessions. Accessions with common genetic lineage and geographical distribution clustered together. Indian kenaf varieties were distinct from cultivars bred in other countries and shared more genetic homology with African accessions. High genetic diversity was observed in the Indian (J = 0.35–0.74) and exotic kenaf germplasm collections (J = 0.38–0.79), suggesting kenaf might have been introduced in India from Africa through Central Asia during early domestication. Genetic similarity-based cluster analysis was in close accordance with taxonomic classification of Hibiscus.  相似文献   

8.
Biochemical and molecular diversity among 14 accessions of Bacopa monnieri (L.) Wettst. collected from various locations of India was investigated. A significant variation was recorded in bacoside A contents of these accessions. A scatter plot of principle component analysis based on bacoside A contents clubbed these populations into two major groups and accession BM14 was placed separately. Similarly, about 35 % variations were detected in these populations based on combined data of random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR). Individually, ISSR markers detected higher variation (44.9 %) as compared to RAPD markers (23 %). Clustering based on molecular marker data grouped these accessions into two major groups and also placed accession BM14 as an out group. The shoot organogenic potential of leaf explants taken from microshoots and rooting of microshoots also varied among accessions. Maximum shoot organogenic potential was observed in accession BM5 and maximum rooting potential was observed in accessions BM1, BM2, BM7, BM10 and BM14. Present study is an important step for developing long-term strategy for conservation of this important medicinal herb.  相似文献   

9.
Genetic diversity, population structure and genome-wide marker-trait association analysis was conducted for the USDA pea (Pisum sativum L.) core collection. The core collection contained 285 accessions with diverse phenotypes and geographic origins. The 137 DNA markers included 102 polymorphic fragments amplified by 15 microsatellite primer pairs, 36 RAPD loci and one SCAR (sequence characterized amplified region) marker. The 49 phenotypic traits fall into the categories of seed macro- and micro-nutrients, disease resistance, agronomic traits and seed characteristics. Genetic diversity, population structure and marker-trait association were analyzed with the software packages PowerMarker, STUCTURE and TASSEL, respectively. A great amount of variation was revealed by the DNA markers at the molecular level. Identified were three sub-populations that constituted 56.1%, 13.0% and 30.9%, respectively, of the USDA Pisum core collection. The first sub-population is comprised of all cultivated pea varieties and landraces; the second of wild P. sativum ssp. elatius and abyssinicum and the accessions from the Asian highland (Afghanistan, India, Pakistan, China and Nepal); while the third is an admixture containing alleles from the first and second sub-populations. This structure was achieved using a stringent cutoff point of 15% admixture (q-value 85%) of the collection. Significant marker-trait associations were identified among certain markers with eight mineral nutrient concentrations in seed and other important phenotypic traits. Fifteen pairs of associations were at the significant levels of P ?? 0.01 when tested using the three statistical models. These markers will be useful in marker-assisted selection to breed pea cultivars with desirable agronomic traits and end-user qualities.  相似文献   

10.
11.
Jatropha curcas L. is gaining importance as a potential energy crop. However, lack of sufficient numbers of molecular markers hinder current research on crop improvement in Jatropha. The expressed sequences tags (EST) sequences deposited in public databases, offers an excellent opportunity to identify simple sequence repeats (SSRs) through data mining, for further research on molecular breeding. In the present study 42,477 ESTs of J. curcas were screened, out of which 5,673 SSRs were identified with 48.8 % simple (excluding mononucleotide repeats) and 52.2 % compound repeat motifs. Amongst these repeat motifs, dinucleotide repeats were abundant (26.5 %), followed by trinucleotide (23.1 %) and tetranucleotide repeats (0.8 %). From these microsatellites, 32 EST-SSR (genic microsatellite) primer pairs were designed. These primers were used to analyze the genetic diversity among 42 accessions collected from different parts of India. Out of the 32 EST-SSR primers, 24 primer pairs exhibited polymorphism among the genotypes, with amplicons varying from one to eight, giving an average of 2.33 alleles per polymorphic marker. Polymorphic information content value ranged from 0.02 to 0.5 with an average of 0.402 indicating moderate level of informativeness within these EST-SSRs markers. The EST-SSR markers developed here will serve as a valuable resource for genetic studies, like linkage mapping, diversity analysis, quantitative trait locus/association mapping, and molecular breeding. The current study also revealed low diversity in the screened Indian Jatropha germplasm. Therefore, the future efforts must be made to broaden the gene pool of Jatropha for the creation of genetic diversity that can be further used for crop improvement through breeding.  相似文献   

12.
Genetic variability and population structure of Sapindus trifoliatus L. (Sapindaceae), collected from Gujarat, Karnataka and Uttar Pradesh states were estimated using three DNA fingerprinting methods viz., random amplified polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD) and inter-simple sequence repeats (ISSR). The cumulative data analysis carried out for all three markers showed 69.42 % polymorphism. The intra-population genetic diversity analysis revealed the highest values of Nei’s genetic diversity (0.16), Shannon information index (0.24) and polymorphic loci (43.99 %) among Bhavnagar (BH) population, whereas lowest values were found in Junagarh (JU) population. The maximum inter-population average genetic distance (0.20) was between Allahabad (AL) and JU populations. Analysis of molecular variance (AMOVA) showed highest percentage of variation among individuals of populations (56 %) followed by 25 % among populations and 19 % among regions. Principal coordinate analysis and UPGMA dendrogram revealed that genetic diversity was in congruence with the geographical diversity. The data strongly suggest that low genetic flow, geographic isolation and to some extent genetic drift are the major factors responsible for high genetic differentiation. Preservation of genetic diversity of S. trifoliatus is important, both to promote adaptability of the populations to changing environment as well as to preserve a large gene pool for future genetic improvement. The present study using RAPD, DAMD and ISSR profiles of S. trifoliatus provide the means of rapid characterization of accessions within the populations, and thus enable the selection of appropriate accessions for further utilization in conservation and prospection programs of this important plant genetic resource.  相似文献   

13.
14.
The development of chloroplast microsatellite (cpSSR) markers in Cucumis species and analysis of their polymorphism and transferability were reported. Fifteen microsatellite markers, represented by mononucleotide repeats, were developed from the complete sequence of Cucumis sativus chloroplast genome. Intraspecific variation was successfully detected in C. sativus and C. melo and revealed mean 1.6 and 1.9 alleles per cpSSR locus, respectively. With the exception of two exon region-located cpSSR markers being monomorphic, each of the others amplified polymorphic fragments in C. sativus or C. melo. A total of 34 polymorphic loci were detected with these cpSSR markers in the two species. Transferability of the newly developed cpSSR markers was checked on an additional set of 41 Cucurbitaceae accessions (belonging to 12 different species), and except for two markers with no amplification in Cucurbita maxima, the others could be transferable to all the accessions tested. Of the 15 cpSSR markers, 14 markers generated fragments with expected band sizes and 13 markers detected interspecific polymorphism among the accessions. Intraspecific polymorphism was also observed within four Cucurbitaceae species excluding C. sativus and C. melo.  相似文献   

15.
This work reports the characterization of 11 polymorphic microsatellite loci in section Caulorrhizae. The primer pairs were designed from Arachis pintoi and showed full transferability to Arachis repens species. These new markers were used to evaluate the genetic diversity in germplasm (accessions and cultivars) of section Caulorrhizae. This new set of markers detected greater gene diversity than morphological and molecular markers such as AFLP (amplified fragment length polymorphism) and RAPD (rapid analysis of polymorphic DNA) previously used in this germplasm.  相似文献   

16.
Genome-wide detection of short insertion/deletion length polymorphisms (InDels, <5 bp) in Brassica rapa (named the A genome) was performed by comparing whole-genome re-sequencing data from two B. rapa accessions, L144 and Z16, to the reference genome sequence of Chiifu-401-42. In total, we identified 108,558 InDel polymorphisms between Chiifu-401-42 and L144, 26,795 InDels between Z16 and Chiifu-401-42, and 26,693 InDels between L144 and Z16. From these, 639 InDel polymorphisms of 3–5 bp in length between L144 and Z16 were selected for experimental validation; 491 (77 %) yielded single PCR fragments and showed polymorphisms, 7 (1 %) did not amplify a product, and 141 (22 %) showed no polymorphism. For further validation of these intra-specific InDel polymorphisms, 503 candidates, randomly selected from the 639 InDels, were screened across seven accessions representing different B. rapa cultivar groups. Of these assayed markers, 387 (77 %) were polymorphic, 111 (22 %) were not polymorphic and 5 (1 %) did not amplify a PCR product. Furthermore, we randomly selected 518 InDel markers to validate their polymorphism in B. napus (the AC genome) and B. juncea (the AB genome), of which more than 90 % amplified a PCR product; 132 (25 %) showed polymorphism between the two B. napus accessions and 41 (8 %) between the two B. juncea accessions. This set of novel PCR-based InDel markers will be a valuable resource for genetic studies and breeding programs in B. rapa.  相似文献   

17.
18.
A simple procedure was developed to convertLathyrus sativus defence-related expressed sequence tags (ESTs) into mappable genetic markers by using PCR. Twenty-nine STS primer pairs were generated on the basis of sequence information from anL. sativus cDNA library. These primers were used to screen for polymorphisms between 2L. sativus accessions, ATC 80878 and ATC 80407, resistant and susceptible, respectively, toMycosphaerella pinodes infection. All 29 primer pairs amplified PCR products in both accessions, 11 of which amplified multiple RAPD-like products. The remaining 18 primer pairs amplified single monomorphic products. Following cloning, sequencing, and database searches, 17 of 18 PCR products were confirmed to have amplified the targeted genome region. Ten of these 17 STS primer pairs revealed polymorphisms between ATC 80878 and ATC 80407 when PCR products were digested with a range of restriction endonucleases. These results suggest that the STS-based PCR analysis will be useful for generating informative molecular markers inL. sativus for future genome mapping experiments.  相似文献   

19.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

20.
To construct a linkage map enriched with tapping panel dryness (TPD)-related markers, we firstly utilized rubber tree ESTs associated with TPD to develop intron length polymorphism (ILP) markers. In this study, 52 new ILP markers were further developed. Together with the ILP markers previously reported, 102 ILP markers developed from TPD-related ESTs were analyzed within 39 Hevea germplasm in detail. The PCR success rate and polymorphism rate of ILP markers was 97.06 and 61.62 %, respectively. The results based on PCR amplification and sequence analyses provided the evidences on cross-species/genera transferability of rubber tree ILP markers. The average polymorphic information content (PIC) values of 39 Hevea germplasm were about 0.1719, indicating that the genetic base of Hevea germplasm selected in this study was very narrow. Among 39 Hevea germplasm, the PIC value of wild rubber tree accessions was the highest, followed by Hevea species and cultivated rubber tree clones. Based on the similarity coefficient of ILP markers, 39 Hevea germplasm were divided into three groups including cultivated clones, wild accessions and Hevea species, suggesting that the classification was generally related to the characterization of Hevea germplasm. The ILP markers developed in this study further enriches the number of molecular marker in rubber tree, and the ILP markers will have a wide application in DNA fingerprinting, genetic diversity, marker-assisted selection and genetic mapping, etc. Moreover, the ILP markers transferred cross-euphorbiaceae family might be utilized in cassava, castor bean and physic nut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号