首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

2.
Insulin infusion causes muscle vasodilation, despite the increase in sympathetic nerve activity. In contrast, a single bout of exercise decreases sympathetic activity and increases muscle blood flow during the postexercise period. We tested the hypothesis that muscle sympathetic activity would be lower and muscle vasodilation would be higher during hyperinsulinemia performed after a single bout of dynamic exercise. Twenty-one healthy young men randomly underwent two hyperinsulinemic euglycemic clamps performed after 45 min of seated rest (control) or bicycle exercise (50% of peak oxygen uptake). Muscle sympathetic nerve activity (MSNA, microneurography), forearm blood flow (FBF, plethysmography), blood pressure (BP, oscillometric method), and heart rate (HR, ECG) were measured at baseline (90 min after exercise or seated rest) and during hyperinsulinemic euglycemic clamps. Baseline glucose and insulin concentrations were similar in the exercise and control sessions. Insulin sensitivity was unchanged by previous exercise. During the clamp, insulin levels increased similarly in both sessions. As expected, insulin infusion increased MSNA, FBF, BP, and HR in both sessions (23 +/- 1 vs. 36 +/- 2 bursts/min, 1.8 +/- 0.1 vs. 2.2 +/- 0.2 ml.min(-1).100 ml(-1), 89 +/- 2 vs. 92 +/- 2 mmHg, and 58 +/- 1 vs. 62 +/- 1 beats/min, respectively, P < 0.05). BP and HR were similar between sessions. However, MSNA was significantly lower (27 +/- 2 vs. 31 +/- 2 bursts/min), and FBF was significantly higher (2.2 +/- 0.2 vs. 1.8 +/- 0.1 ml.min(-1).100 ml(-1), P < 0.05) in the exercise session compared with the control session. In conclusion, in healthy men, a prolonged bout of dynamic exercise decreases MSNA and increases FBF. These effects persist during acute hyperinsulinemia performed after exercise.  相似文献   

3.
We aimed to investigate the interaction between the arterial baroreflex and muscle metaboreflex [as reflected by alterations in the dynamic responses shown by leg blood flow (LBF: by the ultrasound Doppler method), leg vascular conductance (LVC), mean arterial blood pressure (MAP), and heart rate (HR)] in humans. In 12 healthy subjects (10 men and 2 women), who performed sustained 1-min handgrip exercise at 50% maximal voluntary contraction followed immediately by an imposed postexercise muscle ischemia (PEMI), 5-s periods of neck pressure (NP; 50 mmHg) or neck suction (NS; -60 mmHg) were used to evaluate carotid baroreflex function both at rest (Con) and during PEMI. First, the decreases in LVC and LBF and the augmentation of MAP elicited by NP were all greater during PEMI than in Con (DeltaLVC, -1.2 +/- 0.2 vs. -1.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, -97.3 +/- 11.2 vs. -177.0 +/- 21.8 ml/min; DeltaMAP, 6.7 +/- 1.2 vs. 11.5 +/- 1.4 mmHg, Con vs. PEMI; each P < 0.05). Second, in Con, NS significantly increased both LVC and LBF (DeltaLVC, 0.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, 46.6 +/- 9.8 ml/min; significant change from baseline: each P < 0.05), and, whereas during PEMI no significant increases in LVC and LBF occurred during NS itself (DeltaLVC, 0.2 +/- 0.1 ml.min(-1).mmHg(-1); DeltaLBF, 10.8 +/- 9.6 ml/min; each P > 0.05), a decrease was evident in each parameters at 5 s after the cessation of NS. Third, during PEMI, the decrease in MAP elicited by NS was smaller (DeltaMAP, -8.4 +/- 1.0 vs. -5.8 +/- 0.4 mmHg, Con vs. PEMI; P < 0.05), and it recovered to its initial level more quickly after NS (vs. Con). Finally, however, the HR responses to NS and NP were not different between PEMI and Con. These results suggest that during muscle metaboreflex activation in humans, the arterial baroreflex dynamic effect on peripheral vascular conductance is modulated, as exemplified by 1) an augmentation of the NP-induced LVC decrease, and 2) a loss of the NS-induced LVC increase.  相似文献   

4.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

5.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

6.
To investigate the influence of heat stress on the regulation of skeletal muscle carbohydrate metabolism, six active, but not specifically trained, men performed 5 min of cycling at a power output eliciting 70% maximal O2 uptake in either 20 degrees C (Con) or 40 degrees C (Heat) after 20 min of passive exposure to either environmental condition. Although muscle temperature (T(mu)) was similar at rest when comparing trials, 20 min of passive exposure and 5 min of exercise increased (P < 0.05) T(mu) in Heat compared with Con (37.5 +/- 0.1 vs. 36.9 +/- 0.1 degrees C at 5 min for Heat and Con, respectively). Rectal temperature and plasma epinephrine were not different at rest, preexercise, or 5 min of exercise between trials. Although intramuscular glycogen phosphorylase and pyruvate dehydrogenase activity increased (P < 0.05) at the onset of exercise, there were no differences in the activities of these regulatory enzymes when comparing Heat with Con. Accordingly, glycogen use in the first 5 min of exercise was not different when comparing Heat with Con. Similarly, no differences in intramuscular concentrations of glucose 6-phosphate, lactate, pyruvate, acetyl-CoA, creatine, phosphocreatine, or ATP were observed at any time point when comparing Heat with Con. These results demonstrate that, whereas mild heat stress results in a small difference in contracting T(mu), it does not alter the activities of the key regulatory enzymes for carbohydrate metabolism or glycogen use at the onset of exercise, when plasma epinephrine levels are unaltered.  相似文献   

7.
Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.  相似文献   

8.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

9.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

10.
The effect of carbonic anhydrase (CA) inhibition with acetazolamide (Acz, 10 mg/kg body wt iv) on exercise performance and the ventilatory (VET) and lactate (LaT) thresholds was studied in seven men during ramp exercise (25 W/min) to exhaustion. Breath-by-breath measurements of gas exchange were obtained. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for plasma pH, PCO(2), and lactate concentration ([La(-)](pl)). VET [expressed as O(2) uptake (VO(2)), ml/min] was determined using the V-slope method. LaT (expressed as VO(2), ml/min) was determined from the work rate (WR) at which [La(-)](pl) increased 1.0 mM above rest levels. Peak WR was higher in control (Con) than in Acz sutdies [339 +/- 14 vs. 315 +/- 14 (SE) W]. Submaximal exercise VO(2) was similar in Acz and Con; the lower VO(2) at exhaustion in Acz than in Con (3.824 +/- 0. 150 vs. 4.283 +/- 0.148 l/min) was appropriate for the lower WR. CO(2) output (VCO(2)) was lower in Acz than in Con at exercise intensities >/=125 W and at exhaustion (4.375 +/- 0.158 vs. 5.235 +/- 0.148 l/min). [La(-)](pl) was lower in Acz than in Con during submaximal exercise >/=150 W and at exhaustion (7.5 +/- 1.1 vs. 11.5 +/- 1.1 mmol/l). VET was similar in Acz and Con (2.483 +/- 0.086 and 2.362 +/- 0.110 l/min, respectively), whereas the LaT occurred at a higher VO(2) in Acz than in Con (2.738 +/- 0.223 vs. 2.190 +/- 0.235 l/min). CA inhibition with Acz is associated with impaired elimination of CO(2) during the non-steady-state condition of ramp exercise. The similarity in VET in Con and Acz suggests that La(-) production is similar between conditions but La(-) appearance in plasma is reduced and/or La(-) uptake by other tissues is enhanced after the Acz treatment.  相似文献   

11.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

12.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

13.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

14.
The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of acetazolamide (Acz)-induced carbonic anhydrase inhibition (CAI) on muscle intracellular thresholds (T) for intracellular pH (pH(i)) and inorganic phosphate-to-phosphate creatine ratio (P(i)/PCr) and the plasma lactate (La(-)) threshold were examined in nine adult male subjects performing forearm wrist flexion exercise to fatigue. Exercise consisted of raising and lowering (1-s contraction, 1-s relaxation) a cylinder whose volume increased at a rate of 200 ml/min. The protocol was performed during control (Con) and after 45 min of CAI with Acz (10 mg/kg body wt iv). T(pH(i)) and T(P(i)/PCr), determined using (31)P-labeled magnetic resonance spectroscopy (MRS), were similar in Acz (722 +/- 50 and 796 +/- 75 mW, respectively) and Con (855 +/- 211 and 835 +/- 235 mW, respectively). The pH(i) was similar at end-exercise (6.38 +/- 0.10 Acz and 6.43 +/- 0.22 Con), but pH(i) recovery was slowed in Acz. In a separate experiment, blood was sampled from a deep arm vein at the elbow for determination of plasma lactate concentration ([La(-)](pl)) and T(La(-)). [La(-)](pl) was lower (P < 0.05) in Acz than Con (3.7 +/- 1.7 vs. 5.0 +/- 1.7 mmol/l) at end-exercise and in early recovery, but T(La(-)) was higher (1,433 +/- 243 vs. 1,041 +/- 414 mW, respectively). These data suggest that the lower [La(-)](pl) seen with CAI was not due to a delayed onset or rate of muscle La(-) accumulation but may be related to impaired La(-) removal from muscle.  相似文献   

16.
The aim of this study was to determine whether a bout of morning exercise (EXE(1)) can alter neuroendocrine and metabolic responses to subsequent afternoon exercise (EXE(2)) and whether these changes follow a gender-specific pattern. Sixteen healthy volunteers (8 men and 8 women, age 27 +/- 1 yr, body mass index 23 +/- 1 kg/m(2), maximal O(2) uptake 31 +/- 2 ml x kg(-1) x min(-1)) were studied after an overnight fast. EXE(1) and EXE(2) each consisted of 90 min of cycling on a stationary bike at 48 +/- 2% of maximal O(2) uptake separated by 3 h. To avoid the confounding effects of hypoglycemia and glycogen depletion, carbohydrate (1.5 g/kg body wt po) was given after EXE(1), and plasma glucose was maintained at euglycemia during both episodes of exercise by a modification of the glucose-clamp technique. Basal insulin levels (7 +/- 1 microU/ml) and exercise-induced insulin decreases (-3 microU/ml) were similar during EXE(1) and EXE(2). Plasma glucose was 5.2 +/- 0.1 and 5.2 +/- 0.1 mmol/l during EXE(1) and EXE(2), respectively. The glucose infusion rate needed to maintain euglycemia during the last 30 min of exercise was increased during EXE(2) compared with EXE(1) (32 +/- 4 vs. 7 +/- 2 micromol x kg(-1) x min(-1)). Although this increased need for exogenous glucose was similar in men and women, gender differences in counterregulatory responses were significant. Compared with EXE(1), epinephrine, norepinephrine, growth hormone, pancreatic polypeptide, and cortisol responses were blunted during EXE(2) in men, but neuroendocrine responses were preserved or increased in women. In summary, morning exercise significantly impaired the body's ability to maintain euglycemia during later exercise of similar intensity and duration. We conclude that antecedent exercise can significantly modify, in a gender-specific fashion, metabolic and neuroendocrine responses to subsequent exercise.  相似文献   

17.
To study the contributions of insulin-dependent vs. insulin-independent mechanisms to intravenous glucose tolerance (K(G)), 475 experiments in mice were performed. An intravenous glucose bolus was given either alone or with exogenous insulin or with substances modulating insulin secretion and sensitivity. Seven samples were taken over 50 min. Insulin [suprabasal area under the curve (DeltaAUC(ins))] ranged from 0 to 100 mU. ml(-1). 50 min. After validation against the euglycemic hyperinsulinemic clamp, the minimal model of net glucose disappearance was exploited to analyze glucose and insulin concentrations to measure the action of glucose per se independent of dynamic insulin (S(G)) and the combined effect of insulin sensitivity (S(I)) and secretion. Sensitivity analysis showed that insulin [through disposition index (DI)] contributed to glucose tolerance by 29 +/- 4% in normal conditions. In conditions of elevated hyperinsulinemia, contribution by insulin increased on average to 69%. K(G) correlated with DI but was saturated for DeltaAUC(ins) above 15 mU. ml(-1). 50 min. Insulin sensitivity related to DeltaAUC(ins) in a hyperbolic manner, whereas S(G) did not correlate with the insulin peak in the physiological range. Thus glucose tolerance in vivo is largely mediated by mechanisms unrelated to dynamic insulin and saturates with high insulin.  相似文献   

18.
To examine the effects of physical training on glucose effectiveness (S(G)), insulin sensitivity (S(I)), and endogenous glucose production (EGP) in middle-aged men, stable-labeled frequently sampled intravenous glucose tolerance tests (FSIGTT) were performed on 11 exercise-trained middle-aged men and 12 age-matched sedentary men. The time course of EGP during the FSIGTT was estimated by nonparametric stochastic deconvolution. Glucose uptake-specific indexes of glucose effectiveness (S(2*)(G) x 10(2): 0.81 +/- 0.08 vs. 0.60 +/- 0.05 dl. min(-1). kg(-1), P < 0.05) and insulin sensitivity [S(2*)(I) x 10(4): 24.59 +/- 2.98 vs. 11.89 +/- 2.36 dl. min(-1). (microU/ml)(-1). kg(-1), P < 0.01], which were analyzed using the two-compartment minimal model, were significantly greater in the trained group than in the sedentary group. Plasma clearance rate (PCR) of glucose was consistently greater in the trained men than in sedentary men throughout FSIGTT. Compared with sedentary controls, EGP of trained middle-aged men was higher before glucose load. The EGP of the two groups was similarly suppressed by approximately 70% within 10 min, followed by an additional suppression after insulin infusion. EGP returned to basal level at approximately 60 min in the trained men and at 100 min in the controls, followed by its overshoot, which was significantly greater in the trained men than in the controls. In addition, basal EGP was positively correlated with S(2*)(G) . The higher basal EGP and greater EGP overshoot in trained middle-aged men appear to compensate for the increased insulin-independent (S(2*)(G)) and -dependent (S(2*)(I)) glucose uptake to maintain glucose homeostasis.  相似文献   

19.
The effect of one bout of acute exercise on impaired glucose metabolism was studied in obese (480 +/- 20 g), untrained rats, at rest (n = 10) and after 60 min of swimming (n = 5). Using the euglycemic, hyperinsulinemic (10 mU.kg-1 x min-1) clamp, glucose clearance rate increased from 7.6 +/- 0.9 at rest to 9.7 +/- 0.5 mL.kg-1 x min-1 after exercise (p < 0.05). Glucose (3-O-[14C]methylglucose) transport (GT) into epididymal adipocytes were incubated with or without insulin. In the absence of insulin, GT was 0.13 +/- 0.02 and 0.26 +/- 0.07 fmol.cell-1 x min-1 at rest and after exercise, respectively. In the presence of insulin (25-1000 microU.mL-1) GT increased at rest from 0.97 +/- 0.08 to 1.13 +/- 0.07 fmol.cell-1 x min-1, and after exercise from 1.35 +/- 0.05 to 1.87 +/- 0.11 fmol.cell-1 x min-1. GT was significantly higher after exercise compared with rest (p < 0.004). At rest, maximal insulin effect was achieved at 100 microU.mL-1, whereas with exercise, GT increased gradually with the insulin dosage. The following may be concluded: (i) the biological effect of insulin is amplified in obese rats by one bout of exercise and (ii) exercise affects GT into enlarged adipocytes by enhancing tissue responsiveness to insulin and by a cellular mechanism unrelated to the insulin action.  相似文献   

20.
Research suggests that pre-exercise sources of dietary carbohydrate with varying glycemic indexes may differentially affect metabolism and endurance. This study was designed to examine potential differences in metabolism and cycling performance after consumption of moderate glycemic raisins vs. a high glycemic commercial sports gel. Eight endurance-trained male (n = 4) and female (n = 4) cyclists 30 +/- 5 years of age completed 2 trials in random order. Subjects were fed 1 g carbohydrate per kilogram body weight from either raisins or sports gel 45 minutes prior to exercise on a cycle ergometer at 70% V(.-)O2max. After 45 minutes of submaximal exercise, subjects completed a 15-minute performance trial. Blood was collected prior to the exercise bout, as well as after the 45th minute of exercise, to determine serum concentrations of glucose, insulin, lactate, free fatty acids (FFAs), triglycerides, and beta-hydroxybutyrate. Performance was not different (p > 0.05) between the raisin (189.5 +/- 69.9 kJ) and gel (188.0 +/- 64.8 kJ) trials. Prior to exercise, serum concentrations of glucose and other fuel substrates did not differ between trials; however, insulin was higher (p < 0.05) for the gel (110.0 +/- 70.4 microU x ml(-1)) vs. raisin trial (61.4 +/- 37.4 microU x ml(-1)). After 45 minutes of exercise, insulin decreased to 14.2 +/- 6.2 microU x ml(-1) and 13.3 +/- 18.9 microU x ml(-1) for gel and raisin trials, respectively. The FFA concentration increased (+0.2 +/- 0.1 mmol x L(-1)) significantly (p < 0.05) during the raisin trial. Overall, minor differences in metabolism and no difference in performance were detected between the trials. Raisins appear to be a cost-effective source of carbohydrate for pre-exercise feeding in comparison to sports gel for short-term exercise bouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号