首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides from livers of weanling rats were analyzed after 15% partial hepatectomy (PH) and different pre- and post-operative hyberbaric oxygenation (pre- and postHBO). Neu5Ac was the predominant ganglioside-derived sialic acid (>85%) compared to Neu5Gc. Almost identical low total sialic acid content (Neu5Ac+Neu5Gc) of the control and operated nonHBO animals opposed a 6.4- to 7.6-fold increase in pre- and postHBO animals (69.26 and 81.64pmol/mg wet weight, respectively). NanoESI-QTOF mass spectrometry combined with HPTLC immunostaining revealed GM3(Neu5Ac) and GM3(Neu5Gc) as major gangliosides, correlating with the respective sialic acid concentrations. Minor neolacto-series gangliosides were enhanced in preHBO and postHBO, but GM1-core gangliosides only in preHBO rats. GM2 and GalNAc-GM1b were clearly detectable in oxygenated rats compared to traces in the control and nonHBO animals. These results point at a functional role of gangliosides in liver growth regulation and reconstitution after PH combined with pre- and post-operative HBO treatment.  相似文献   

2.
This study presents a comparative analysis of gangliosides from lymphoid (spleen and thymus) and other tissues (brain, liver, lung, muscle) of C57BL/6 mice homozygous (-/-) and heterozygous (+/-) for the tumor necrosis factor receptor 1 (TNFRp55). Quantitative and qualitative differences in the expression of the lipid-bound N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) and of various ganglioside biosynthesis pathways were detected between the tissues of the TNFRp55 -/- and the control TNFRp55 +/- mice. Sialic acid profiles showed a strong decrease in the absolute amount of sialic acids (Neu5Ac + Neu5Gc) in the lungs and thymus of homozygous (1.41 and 0.3 ng/mg wet weight, respectively) compared with control heterozygous animals (7.18 and 2.05 ng/mg wet weight, respectively). Considerable differences of Neu5Ac/Neu5Gc ratios in the lungs, muscle, spleen, and thymus were also detected. The gangliosides GM3(Neu5Ac) and GM3(Neu5Gc) were the dominant gangliosides in the lungs of the control animals, whereas the knockout mice almost completely lacked these structures in this organ. Reduced expression of GM1b-type gangliosides (GM1b and GalNAc-GM1b) was also found in the lungs, spleen, and thymus of the TNFRp55 knockout mice. On the other hand, neolacto-series gangliosides were more abundant in the lungs, brain, and muscle of the knockout mice, whereas their expression in the liver, spleen, and thymus was similar in both groups of animals. This study provides in vivo evidence that TNF signaling via the TNFRp55 is involved in the acquisition of a distinct ganglioside assembly in different mouse organs. TNFRp55 signaling seems to be especially important for the activation of the GM1b-type ganglioside biosynthetic pathway that is a unique characteristic of the mouse lymphoid tissues.  相似文献   

3.
New ganglioside analogs that inhibit influenza virus sialidase   总被引:1,自引:0,他引:1  
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac alpha(2-S-6)Glc beta(1-1)Ceramide (1) and the GM3 analog Neu5Ac alpha(2-S-6)Gal beta(1-4)Glc beta(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8 x 10(-6) and 1.5 x 10(-5) M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac alpha(2-S-6)Gal beta(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki = 1.0 x 10(-4) M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were non-hydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases from Clostridium perfringens and Arthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.  相似文献   

4.
Humans, in contrast to other mammals, do not synthesize N-glycolyl-neuraminic acid (Neu5Gc) due to a deletion in the gene (cmah) encoding the enzyme responsible for this conversion, the cytidine monophospho-N-acetyl-neuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase). The detection of considerable amounts of Neu5Gc-sialoconjugates, in particular gangliosides, in human malignancies makes these antigens attractive targets for immunotherapy, in particular with monoclonal antibodies (mAbs). We have previously described a GM3(Neu5Gc) ganglioside-specific mAb, named 14F7, with the ability to kill tumor cells in a complement-independent manner. Silencing the cmah gene in GM3(Neu5Gc)-expressing L1210 mouse lymphocytic leukemia B cells caused the abrogation of this cytotoxic effect. We now show that cmah-silenced L1210 cells (cmah-kd) express a high level of GM3(Neu5Ac) and have an impaired ability for anchorage-independent cell growth and tumor development in vivo. No evidences of increased immunogenicity of the cmah-kd cell line were found. These results provide new evidences on the role of GM3(Neu5Gc), or Neu5Gc-sialoconjugates in general, in tumor biology. As an important tool in this study, we used the humanized version (here referred to as 7C1 mAb) of a recently described, rationally-designed mutant of 14F7 mAb that is able to bind to both GM3(Neu5Gc) and GM3(Neu5Ac). In contrast to its parental antibody, the humanized 14F7 (14F7hT) mAb, 7C1 mAb was able to kill not only GM3(Neu5Gc)-expressing L1210 wild type cells, but also GM3(Neu5Ac)-expressing cmah-kd cells, which endorses this antibody as a potential agent for cancer immunotherapy.  相似文献   

5.
In this study the comparative TLC immunostaining investigation of neutral GSLs and gangliosides from human skeletal and heart muscle is described. A panel of specific polyclonal and monoclonal antibodies as well as the GM1-specific choleragenoid were used for the overlay assays, combined with preceding neuraminidase treatment of gangliosides on TLC plates. This approach proved homologies but also quantitative and qualitative differences in the expression of ganglio-, globo- and neolacto-series neutral GSLs and gangliosides in these two types of striated muscle tissue within the same species. The main neutral GSL in skeletal muscle was LacCer, followed by GbOse3Cer, GbOse4Cer, nLcOse4Cer and monohexosylceramide, whereas in heart muscle GbOse3Cer and GbOse4Cer were the predominant neutral GSLs beside small quantities of LacCer, nLcOse4Cer and monohexosylceramide. No ganglio-series neutral GSLs and no Forssman GSL were found in either muscle tissue. GM3(Neu5Ac) was the major ganglioside, comprising almost 70% in skeletal and about 50% in cardiac muscle total gangliosides. GM2 was found in skeletal muscle only, while GD3 and GM1b-type gangliosides (GM1b and GD1) were undetectable in both tissues. GM1a-core gangliosides (GM1, GD1a, GD1b and GT1b) showed somewhat quantitative differences in each muscle; lactosamine-containing IV3Neu5Ac-nLcOse4Cer was detected in both specimens. Neutral GSLs were identified in TLC runs corresponding to e.g. 0.1 g muscle wet weight (GbOse3Cer, GbOse4Cer), and gangliosides GM3 and GM2 were elucidated in runs which corresponded to 0.2 g muscle tissue. Only 0.02 g and 0.004 g wet weight aliquots were necessary for unequivocal identification of neolacto-type and GM1-core gangliosides, respectively. Muscle is known for the lowest GSL concentration from all vertebrate tissues studied so far. Using the overlay technique, reliable GSL composition could be revealed, even from small muscle probes on a sub-orcinol and sub-resorcinol detection level. Abbreviations: ATCC, American Type Culture Collection; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac, N-acetylneuraminic acid; Neu5Gc, N-glycolylneuraminic acid [78]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [79] and the ganglioside nomenclature system of Svennerholm [80]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gal1-4Gal1-4Glc1-1Cer; globoside or globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; Fo or Forssman GSL, GalNAc1-3GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; paragloboside or lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1 or GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GD3, II3(Neu5Ac)2-LacCer; GD1a, IV3Neu5Ac,II3Neu5Ac-GgOse4Cer; GD1b, (II3Neu5Ac)2-GgOse4Cer; GD1, IV3Neu5Ac,III6Neu5Ac-GgOse4Cer; GT1b, IV3Neu5Ac,II3(Neu5Ac)2-GgOse4Cer; GQ1b, IV3(Neu5Ac)2, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

6.
Cytosolic Chinese hamster ovary (CHO) cell sialidase has been cloned as a soluble glutathione S-transferase (GST)-sialidase fusion protein with an apparent molecular weight of 69 kD in Escherichia coli. The enzyme has then been produced in mg quantities at 25-L bioreactor scale and purified by one-step affinity chromatography on glutathione sepharose (Burg, M.; Müthing, J. Carbohydr. Res. 2001, 330, 335-346). The cloned sialidase was probed for desialylation of a wide spectrum of different types of gangliosides using a thin-layer chromatography (TLC) overlay kinetic assay. Different gangliosides were separated on silica gel precoated TLC plates, incubated with increasing concentrations of sialidase (50 degreesU/mL up to 1.6 mU/mL) without detergents, and desialylated gangliosides were detected with specific anti-asialoganglioside antibodies. The enzyme exhibited almost identical hydrolysis activity in degradation of GM3(Neu5Ac) and GM3(Neu5Gc). A slightly enhanced activity, compared with reference Vibrio cholerae sialidase, was detected towards terminally alpha(2-3)-sialylated neolacto-series gangliosides IV3-alpha-Neu5Ac-nLc4Cer and VI3-alpha-Neu5Ac-nLc6Cer. The ganglio-series gangliosides G(D1a), G(D1b), and G(T1b), the preferential substrates of V. cholerae sialidase for generating cleavage-resistant G(M1), were less suitable targets for the CHO cell sialidase. The increasing evidence on colocalization of gangliosides and sialidase in the cytosol strongly suggests the involvement of the cytosolic sialidase in ganglioside metabolism on intracellular level by yet unknown mechanisms.  相似文献   

7.
1H-NMR spectroscopy was used to study cleavage and synthesis of N-acetyl- and N-glycoloyl-D-neuraminic acid by Clostridium perfringens aldolase. Whereas the alpha-anomers of Neu5Ac and Neu5Gc serve as substrate in the cleavage reaction, alpha-ManNAc and alpha-ManNGc are its primary products. The same alpha-anomers are needed by the aldolase for the synthesis of Neu5Ac and Neu5Gc. During the enzyme reaction in D2O both H-atoms at C-3 of Neu5Ac are exchanged by deuterium, H-3e reacting faster than H-3a. Rate constants and concentrations at equilibrium of reactants are temperature- and pH-dependent: The amount of Neu5Ac in equilibrium increases with decreasing temperature and increasing pH-value. Based on these results a mechanism of aldolase action is discussed.  相似文献   

8.
Sialyl-linkage specificity of sialidases of the human influenza A virus strains, A/Aichi/2/68 (H3N2) and A/PR/8/34 (H1N1) were studied using natural and synthetic gangliosides. The sialidase of the A/Aichi/2/68 strain hydrolyzed the terminal Neu5Acalpha2-3Gal sequence but not the Neu5Acalpha2-3 linkage on the inner Gal of GM1a, which is a ganglioside that has the gangliotetraose chain (Galbeta1-3GalNAcbeta1-4- (Neu5Acalpha2-3)Galbeta1++ +-4Glcbeta1-Cer). The sialidase hydrolyzed the Neu5Ac on the inner Gal of GM2, which had a shorter gangliotriose chain. GM4, which had the shortest chain (Neu5Acalpha2-3Galbeta1-Cer) of the gangliosides, had a lower substrate specificity. The N1 and N2 sialidase subtypes of the human influenza A virus had no significant variation in their substrate specificity for the gangliosides. Analysis of 11 synthetic gangliosides, which contained various ceramide or sialic acid moieties, demonstrated that A/Aichi/2/68 (H3N2) sialidase recognized the ceramide and sialic acid moiety and the length and structure of the sialyl sugar chain.   相似文献   

9.
The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.  相似文献   

10.
The common sialic acids of mammalian cells are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are an exception, because of a mutation in CMP-sialic acid hydroxylase, which occurred after our common ancestor with great apes. We asked if the resulting loss of Neu5Gc and increase in Neu5Ac in humans alters the biology of the siglecs, which are Ig superfamily members that recognize sialic acids. Human siglec-1 (sialoadhesin) strongly prefers Neu5Ac over Neu5Gc. Thus, humans have a higher density of siglec-1 ligands than great apes. Siglec-1-positive macrophages in humans are found primarily in the perifollicular zone, whereas in chimpanzees they also occur in the marginal zone and surrounding the periarteriolar lymphocyte sheaths. Although only a subset of chimpanzee macrophages express siglec-1, most human macrophages are positive. A known evolutionary difference is the strong preference of mouse siglec-2 (CD22) for Neu5Gc, contrasting with human siglec-2, which binds Neu5Ac equally well. To ask when the preference for Neu5Gc was adjusted in the human lineage, we cloned the first three extracellular domains of siglec-2 from all of the great apes and examined their preference. In fact, siglec-2 had evolved a higher degree of recognition flexibility before Neu5Gc was lost in humans. Human siglec-3 (CD33) and siglec-6 (obesity-binding protein 1) also recognize both Neu5Ac and Neu5Gc, and siglec-5 may have some preference for Neu5Gc. Others showed that siglec-4a (myelin-associated glycoprotein) prefers Neu5Ac over Neu5Gc. Thus, the human loss of Neu5Gc may alter biological processes involving siglec-1, and possibly, siglec-4a or -5.  相似文献   

11.
The two main molecular species of sialic acid existing in nature are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Neu5Ac is abundant in mammalian brains and plays crucial roles in many neural functions. In contrast, Neu5Gc is present only at a trace level in vertebrate brains. The brain-specific suppression of Neu5Gc synthesis, which is a common feature in mammals, suggests that Neu5Gc has toxicity against brain functions. However, in vivo kinetics of Neu5Gc in the whole body, especially in the brain, has not been studied in sufficient detail. To determine the in vivo kinetics of Neu5Gc, 14C-Neu5Gc was enzymatically synthesized and injected into rat tail veins. Although most of 14C-Neu5Gc was excreted in urine, a small amount of 14C-Neu5Gc was detected in the brain. Brain autoradiography indicated that 14C-Neu5Gc was accumulated predominantly in the hippocampus. 14C-Neu5Gc transferred into the brain was incorporated into gangliosides including GM1, GD1a, GD1b, GT1b and GQ1b. Reduction of 14C-Neu5Gc after intracerebroventricular infusion was slower than that of 14C-Neu5Ac in the brain and hippocampus. The results suggest that Neu5Gc is transferred from blood into the brain across the blood brain barrier and accumulates in the brain more preferentially than does Neu5Ac.  相似文献   

12.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

13.
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.  相似文献   

14.
The aim of the present study was to investigate the ganglioside expression of the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Cells were propagated under controlled pH conditions and oxygen supply in bioreactors of 1 and 7.5l volumes by repeated batch fermentation. Gangliosides were isolated from 2.7×1011 cells, purified by silica gel chromatography and separated into mono- and disialoganglioside fractions by preparative DEAE anion exchange high performance liquid chromatography. Individual gangliosides were obtained by preparative thin layer chromatography. Their structural features were established by immunostaining, fast atom bombardment and gas chromatography mass spectrometry. In addition to gangliosides of the GM1a-pathway (GM2, GM1a and GD1a) and GM1b (IV3Neu5Ac-GgOse4Cer) and GalNAc-GM1b of the GM1b-pathway, the dis8aloganglioside GD1 (IV3Neu5Ac, III6Neu5Ac-GgOse4Cer) was found in equal amounts compared to GD1a (IV3Neu5Ac, II3Neu5Ac-GgOse4Cer). All gangliosides were substituted with C24:0,24:1 and C16:0 fatty acids, sphingosine andN-acetylneuraminic acid as the sole sialic acid. Abbreviations: FAB-MS, fast atom bombardment-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycoloylneuraminic acid [57]. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [58] and the nomenclature of Svennerholm [59]. Gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer gangliopentaosylceramide or GgOse5Cer, GalNAc1-4Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; GM2, II3Neu5Ac-GgOse3Cer; GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GalNAc-GM1b, IV3Neu5Ac-GgOse5Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer; GD1 or GD1e, IV3Neu5Ac, III6Neu5AcGgOse4Cer; GD1e, IV3(Neu5Ac)2-GgOse4Cer; GT1b, IV3Neu5Ac, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

15.
Go  Shiori  Sato  Chihiro  Hane  Masaya  Go  Shinji  Kitajima  Ken 《Glycoconjugate journal》2022,39(5):619-631
Glycoconjugate Journal - A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast...  相似文献   

16.
Our study deals with the interaction of CD33 related-siglecs-5,-7,-8,-9,-10 with gangliosides GT1b, GQ1b, GD3, GM2, GM3 and GD1a. Siglec-5 bound preferentially to GQ1b, but weakly to GT1b, whereas siglec-10 interacted only with GT1b ganglioside. Siglec-7 and siglec-9 displayed binding to gangliosides GD3, GQ1b and GT1b bearing a disialoside motif, though siglec-7 was more potent; besides, siglec-9 interacted also with GM3. Siglec-8 demonstrated low affinity to the gangliosides tested compared with other siglecs. Despite high structural similarity of CD33 related siglecs, they demonstrated different ganglioside selectivity, in particular to the Neu5Acalpha2-8Neu5Ac motif.  相似文献   

17.
It has been shown that human blood contains a soluble 67 kDa enzyme, belonging by its donor-acceptor properties to trans-sialidases. The enzyme is capable of both cleaving and synthesizing alpha2-3 and alpha2-6 sialosides [Atherosclerosis2001, 159, 103]. In this work the study of donor-acceptor specificity of the new enzyme was extended. It has been demonstrated in vitro that trans-sialidase possesses the ability of transferring Neu5Ac residue to acceptor (asialofetuin) both from alpha2-3- (GM1, GM3, GD1a), and alpha2-8-sialylated gangliosides (GD3 and GD1b, but not GT1b and GQ1b). Transfer of radiolabeled Neu5Ac from fetuin to glycosphingolipids demonstrated that Lac-Cer>mono- and disialogangliosides>GT1b>GQ1b were acceptors for this enzyme. Two methods were used to reveal whether alpha2-8 bond can be formed between Neu5Ac residues during trans-sialylation, that is immunochemical detection using monoclonal antibodies specific to alpha2-8 di- and oligosialic acids, and fluorometric C7/C9 analysis. Both methods demonstrated the formation of Neu5Acalpha2-8Neu5Ac termination by trans-sialidase, for example, in case of the use 3'SL as sialic acid donor and Neu5Ac-PAA or LDL as acceptor. Thus, human trans-sialidase in vitro displays wide substrate specificity: the enzyme is capable of digesting as well as synthesizing alpha2-3, alpha2-6, and alpha2-8 sialosides.  相似文献   

18.
We have evaluated methods for separation, preparation, and characterization of alpha-2----8-linked oligomers of sialic acids (Neu5Ac and Neu5Gc) and deaminated neuraminic acid (KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) recently found as a naturally occurring novel type of sialic acid analogue. (A) We examined preparative anion-exchange chromatography for fractionation and preparation of oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN). (B) We also examined the TLC method for separation and differentiation of the partial acid hydrolysates of colominic acid, as well as polysialoglycoproteins (PSGP) and poly(KDN)-glycoproteins (KDN-gp) isolated from rainbow trout eggs, and for discrimination of lower oligomers of Neu5Ac, Neu5Gc, and KDN. (C) We developed the high-performance adsorption-partition chromatographic method for (a) separation of monomers and oligomers of three nonulosonates according to the difference in substituents at C-5 and the presence or absence of 9-O-acetyl groups in oligo(KDN) and (b) separation of three homologous series of lower oligomers according to the degree of polymerization. (D) We examined and compared high-performance anion-exchange chromatographic separation of 3H-labeled oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN) alditols by using Mono-Q HR 5/5 resin. (E) We examined a method of selective and quantitative microprecipitation for separation and purification of oligomers and polymers of Neu5Ac by treating them with cetylpyridinium chloride. We also used PSGP and KDN-gp to test both the sensitivity and the selectivity of this method.  相似文献   

19.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21. 90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N'-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (alpha 2-6) or (alpha 2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (alpha 1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(alpha 2-3)Gal(beta 1-3)[Neu5Gc(alpha 2-6)]GlcNAc(beta 1-2 )Man(alpha 1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(alpha 1-6). In fraction mTf-V, which was found to be very heterogeneous by (1)H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri'-antennary glycans sialylated by Neu5Gc alpha-2,6- and alpha-2, 3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(alpha 2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (alpha 2-6)GlcNAc sialyltransferase.  相似文献   

20.
A glycolipid antigen, detected by a monoclonal antibody (ME 311) obtained by immunizing mice with a human metastatic melanoma cell line (WM 46), was isolated and structurally characterized. Using immunostaining on thin-layer chromatograms for monitoring, 1.0 mg of a pure alkali-labile disialoganglioside was obtained from 23 g of packed melanoma cells (WM 164). Fractionation of the lipid extract was done on DEAE-Sepharose columns into total disialogangliosides which were repeatedly separated by high-pressure liquid chromatography. On mild alkaline treatment, the ganglioside was converted to a slower migrating species identical with a ganglioside GD3 isolated from the same source (Neu5Ac alpha 2----8Neu5Ac alpha 2----3Gal beta 1----4Glc beta 1----1-cer-amide) and specifically detected by monoclonal antibody R24. Comparison of the two gangliosides by fast-atom bombardment mass spectrometry (revealing an acetyl group on the terminal sialic acid on the alkali-labile species) and by 1H NMR (indicating the position of the acetyl group) suggested the following structure: Neu5,9Ac2 alpha 2----8Neu5Ac alpha 2----3Gal beta 1----4Glc beta 1----1-ceramide. This is identical with a ganglioside proposed earlier to exist in melanoma cells (Cheresh, D. A., Varki, A. P., Varki, N. M., Stallcup, W. B., Levine, J., and Reisfeld, R. A. (1984) J. Biol. Chem. 259, 7453-7459). Immunostaining with ME 311 antibody of cell extracts on thin-layer chromatography chromatograms revealed only this ganglioside in the melanoma cells, while normal human brain was negative. However, in one of the total ganglioside extracts tested for presence of binding with antibody ME 311, three gangliosides were found to bind. No evidence was obtained for the presence of the antigenic epitope in mucins or glycoproteins of the melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号