首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components—ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)—suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em = 400/400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.  相似文献   

2.
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.  相似文献   

3.
St. John’s wort (Hypericum perforatum), a perennial herb native to Europe, is widely used for and seems to be effective in treatment of mild to moderate depression. Hypericin, a singlet oxygen-generating photosensitizer that absorbs in both the visible and the UVA range, is considered to be one of the bioactive ingredients of St. John’s wort, and commercial preparations are frequently calibrated to contain a standard concentration. Hypericin can accumulate in ocular tissues, including lenses, and can bind in vitro to α-crystallin, a major lens protein. α-crystallin is required for lens transparency and also acts as a chaperone to ensure its own integrity and the integrity of all lens proteins. Because there is no crystallin turnover, damage to α-crystallin is cumulative over the lifetime of the lens and can lead to cataracts, the principal cause of blindness worldwide. In this work we study hypericin photosensitization of α-crystallin and detect extensive polymerization of bovine α-crystallin exposed in vitro to hypericin and UVA. We use fluorescence confocal microscopy to visualize binding between hypericin and α-crystallin in a human lens epithelial (HLE) cell line. Further, we show that UVA irradiation of hypericin-treated HLE cells results in a dramatic decrease in α-crystallin detection concurrent with a dramatic accumulation of the tryptophan oxidation product N-formylkynurenine (NFK). Examination of actin in HLE cells indicates that this cytoskeleton protein accumulates NFK resulting from hypericin-mediated photosensitization. This work also shows that filtration of wavelengths <400 nm provides incomplete protection against α-crystallin modification and NFK accumulation, suggesting that even by wearing UV-blocking sunglasses, routine users of St. John’s wort cannot adequately shield their lenses from hypericin-mediated photosensitized damage.  相似文献   

4.
Human lens α-crystallin becomes progressively insoluble with age and is the major crystallin component in the water-insoluble (WI) fraction. The mechanism that causes the originally water-soluble (WS) α-crystallin to become insoluble is unknown. A conformational change by chemical modification may be the cause, but the nature of insolubility renders it impossible to study protein conformation in the WI fraction by most spectroscopic measurements. In the present study, α-crystallin in the WI fraction was extracted by urea and reconstituted to a folded protein by dialysis. The refolded urea-soluble (US) α-crystallin was compared with WS α-crystallin. The US α-crystallin has a greater amount of polymeric species, but fewer degraded subunits than the WS α-crystallin as shown by SDS-PAGE and Western blot. Circular dichroism (CD) measurements indicate that they have the same secondary structure but a different tertiary structure, possibly a partial unfolding in the US α-crystallin. This is supported by fluorescence measurements: Trp residues are more exposed and protein has a more-hydrophobic surface in the US than in the WS α-crystallin. Blue fluorescence further indicates that the US α-crystallin has a greater amount of pigment than the WS α-crystallin. Together, these results indicate that the US α-crystallin is a chemically and conformationally modified protein.  相似文献   

5.
The crystallin synthesis of rat lens cells in cell culture systems was studied in relevance to their terminal differentiation into lens fibers. SDS-gel electrophoresis combined with several immunological techniques showed that γ-crystallin is a fiber-specific lens protein and is not localized in the epithelium of either newborn or adult lenses. When lens epithelial cells of newborn rats were cultured in vitro , α-crystaIlin was detected in many, but not all, of cells cultured for 10 days. Cells with α-crystallin gradually changed their shape into a flattened filmy form and finally differentiated into lentoid bodies. The differentiation of lentoid bodies was also found in cultures of epithelial cells obtained from adult lenses. The molecular constitution of lentoid bodies was the same as that of lens fibers in situ . The differentiation of lentoid bodies occurred successively for 5 months in cultures of lens epithelial cells. Most of the proliferating cells, however, lost α-crystallin during the culture period. Thereafter, they did not show any sign of further differentiation into lens fibers. Four clonal lines were established from these cells. One protein which is specific to the lens epithelium and the neural retina in situ (tentatively named as βu-crystallin) was maintained in all lines, suggesting that some specific properties of ocular cells remain in the lined cells.  相似文献   

6.
Human lens α-crystallin becomes progressively insoluble with age and is the major crystallin component in the water-insoluble (WI) fraction. The mechanism that causes the originally water-soluble (WS) α-crystallin to become insoluble is unknown. A conformational change by chemical modification may be the cause, but the nature of insolubility renders it impossible to study protein conformation in the WI fraction by most spectroscopic measurements. In the present study, α-crystallin in the WI fraction was extracted by urea and reconstituted to a folded protein by dialysis. The refolded urea-soluble (US) α-crystallin was compared with WS α-crystallin. The US α-crystallin has a greater amount of polymeric species, but fewer degraded subunits than the WS α-crystallin as shown by SDS-PAGE and Western blot. Circular dichroism (CD) measurements indicate that they have the same secondary structure but a different tertiary structure, possibly a partial unfolding in the US α-crystallin. This is supported by fluorescence measurements: Trp residues are more exposed and protein has a more-hydrophobic surface in the US than in the WS α-crystallin. Blue fluorescence further indicates that the US α-crystallin has a greater amount of pigment than the WS α-crystallin. Together, these results indicate that the US α-crystallin is a chemically and conformationally modified protein.  相似文献   

7.
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65–75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%–30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC–MS/MS results showed Nε-acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.  相似文献   

8.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin.  相似文献   

9.
Summary Lens induction is a classic example of the tissue interactions that lead to cell specialization during early vertebrate development. Previous studies have shown that a large region of head ectoderm, but not trunk ectoderm, of 36 h (stage 10) chicken embryos retains the potential to form lenses and synthesize the protein δ-crystallin under some conditions. We have used polyacrylamide gel electrophoresis and fluorography to examine protein and glycoprotein synthesis in presumptive lens ectoderm and presumptive dorsal (trunk) epidermis to look for differentiation markers for these two regions prior to the appearance of δ-crystallin at 50 h. Although nearly all of the proteins incorporating3H-leucine were shared by presumptive lens ectoderm and trunk ectoderm, these two regions showed more dramatic differences in the incorporation of3H-sugars into glycoproteins. when non-lens head ectoderm that has a capacity for lens formation in vitro was labeled, a hybrid pattern of glycoprotein synthesis was discovered: glycoproteins found in either presumptive lens ectoderm or trunk ectoderm were oftentimes also found in other head ectoderm. Therefore, molecular markers have been identified for three regions of ectoderm committed to different fates (lens and skin), well before features of terminal differentiation begin to appear in the lens.  相似文献   

10.
α-Crystallin, comprising 40–50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10–76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10–450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10–20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lβ-, Dα-, Dβ-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography–mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dβ-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.  相似文献   

11.
Keenan J  Manning G  Elia G  Dunn MJ  Orr DF  Pierscionek BK 《Proteomics》2012,12(11):1830-1843
The eye lens remains transparent because of soluble lens proteins known as crystallins. For years γ-crystallins have been known as the main lens proteins in lower vertebrates such as fish and amphibians. The unique growth features of the lens render it an ideal structure to study ageing; few studies have examined such changes in anuran lenses. This study aimed to investigate protein distribution patterns in Litoria infrafrenata and Phyllomedusa sauvagei species. Lenses were fractionated into concentric layers by controlled dissolution. Water-soluble proteins were separated into high (HMW), middle (MMW) and low molecular weight (LMW) fractions by size-exclusion HPLC and constituents of each protein class revealed by 1DE and 2DE. Spots were selected from 2DE gels on the basis of known ranges of subunit molecular weights and pH ranges and were identified by MALDI-TOF/TOF MS following trypsin digestion. Comparable lens distribution patterns were found for each species studied. Common crystallins were detected in both species; the most prominent of these was γ-crystallin. Towards the lens centre, there was a decrease in α- and β-crystallin proportions and an increase in γ-crystallins. Subunits representing taxon-specific crystallins demonstrating strong sequence homology with ζ-crystallin/quinone oxidoreductase were found in both L. infrafrenata and P. sauvagei lenses. Further work is needed to determine which amphibians have taxon-specific crystallins, their evolutionary origins, and their function.  相似文献   

12.
τ-Crystallin is a taxon-specific structural protein found in eye lenses. We present here the cloning and sequencing of complete τ-crystallin cDNA from the embryonic lens ofCrocodylus palustris and establish it to be identical to the α-enolase gene from non-lenticular tissues. Quantitatively, the τ-crystallin was found to be the least abundant crystallin of the crocodilian embryonic lenses. Crocodile τ-crystallin cDNA was isolated by RT-PCR using primers designed from the only other reported sequence from duck and completed by 5′- and 3′-rapid amplification of cDNA ends (RACE) using crocodile gene specific primers designed in the study. The complete τ-crystallin cDNA of crocodile comprises 1305 bp long ORF and 92 and 409 bp long untranslated 5′- and 3′-ends respectively. Further, it was found to be identical to its putative counterpart enzyme α-enolase, from brain, heart and gonad, suggesting both to be the product of the same gene. The study thus provides the first report on cDNA sequence of τ-crystallin from a reptilian species and also re-confirms it to be an example of the phenomenon of gene sharing as was demonstrated earlier in the case of peking duck. Moreover, the gene lineage reconstruction analysis helps our understanding of the evolution of crocodilians and avian species.  相似文献   

13.
Lens proteins and lens gross morphology were examined during tadpole and adult development of the bullfrog, Rana catesbeiana. Significant increases in the lens physical parameters of diameter, wet weight, dry weight (94–97% protein), and percent water were observed to accompany both natural and thyroxine-induced metamorphosis. These increases in lens parameters were not accompanied by growth of tadpoles during metamorphic change. Lens proteins were isolated from whole lenses and also from specified layers within whole lenses by a new fractionation method. Electrophoretic examination of whole lenses showed that the lens proteins did not change rapidly, one for another, prior to or during metamorphosis. However, changes became apparent during post metamorphic development. These changes included an increase in the relative concentration and mobility of alpha crystallin, a decrease in the relative concentration of gamma crystallin and an increase in the relative concentration of beta crystallin. Examination of specified layers within tadpole and frog lenses demonstrated that changes in the patterns of lens protein synthesis and modification may occur during development. Rapid and reproducible methods for quantitating changes in lens gross morphology and lens proteins, and for fractionating both tadpole and frog lenses into a number of definable layers were devised in the course of this study.  相似文献   

14.
In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically.  相似文献   

15.
The proteasome is known to be the main enzymatic complex responsible for the intracellular degradation of altered proteins, and the age-related accumulation of modified lens proteins is associated to the formation of cataracts. The aim of this study was to determine whether the human lens proteasome becomes functionally impaired with age. The soluble and insoluble protein fractions of human lenses corresponding to various age-groups were characterized in terms of their levels of glyco-oxidative damage and found to show increasing anti-carboxymethyl-lysine immunoreactivity with age. Concomitantly, decreasing proteasome contents and peptidase activities were observed in the water-soluble fraction. The fact that peptidylglutamyl-peptide hydrolase activity is most severely affected with age suggests that specific changes are undergone by the proteasome itself. In particular, increasing levels of carboxymethylation were observed with age in the proteasome. It was concluded that the lower levels of soluble active enzymatic complex present in elderly lenses and the post-translational modifications affecting the proteasome may at least partly explain the decrease in proteasome activity and the concomitant accumulation of carboxymethylated and ubiquitinated proteins which occur with age.  相似文献   

16.
Structural studies on lens proteins   总被引:3,自引:3,他引:0  
The sequence around the thiol group in lens proteins has been investigated. The proteins were converted into their carboxy[14C]methyl derivatives and submitted to partial acid hydrolysis, or digested with proteolytic enzymes. Acid hydrolysis of bovine α-crystallin gives N-seryl-(S-carboxymethyl)cysteine, Ser-CMCys (Waley, 1965a), but this dipeptide is not obtained from β-crystallin or γ-crystallin. Trypsin and chymotrypsin also give different peptides from the three crystallins. The radioactive peptide from α-crystallin and chymotrypsin has the sequence Ser-CMCys-Ser-Leu; another peptide, Asp-Leu-Leu-Phe, was also identified. The radioactive peptides obtained from bovine α-crystallin are probably also obtained from human α-crystallin, and from bovine and human albuminoid (the insoluble lens protein). α-Crystallin has been fractionated by chromatography in urea on DEAE-cellulose. Comparison of the fractions by peptide `mapping', and immunochemically, shows that they fall into two classes. The fraction eluted first differs from the later fractions, but the later fractions resemble each other The first fraction may represent impurities, or it may be a structurally different sub-unit of α-crystallin.  相似文献   

17.
A number of proteins have been isolated from the human lens at different stages of development, from before birth to old age. These proteins have been characterized and compared with each other and with corresponding proteins from bovine lens. Many similarities were found between human and bovine crystallins, but alpha-crystallin isolated from old human lenses using DEAE-cellulose, unlike bovine alpha-crystallin similarly isolated, is not found as large soluble aggregates. The amide contents of various lens protein fractions were determined. No extensive changes were found during adult life, but there was evidence that significant deamidation of alpha-crystallin had occurred before birth and possibly during infancy. The results are related to the unique development and aging of the lens.  相似文献   

18.
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Becaue the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.  相似文献   

19.
Addition of calpain II (EC 3.4.22.17) to soluble proteins from 10-day-old rat lens caused an increase in turbidity and production of water-insoluble protein. The insolubilization increased with higher concentrations of both lens protein and calpain II, it could be prevented by the cysteine protease inhibitor E-64; it required at least 0.5 mM Ca2+, it was limited to 6% of the soluble protein present and resulted from precipitation β-crystallin polypeptides. When compared by two-dimensional electrophoresis, the insoluble β-crystallin polypeptides produced by calpain II were similar to insoluble β-crystallin polypeptides found incataractous lenses. Trypsin also caused insolubilization of β-crystallin polypeptides, but these polypeptides were unlike polypeptides produced during cataract formation. These data suggested that the loss of solubility was due to a specific removal of N/or C-terminal extensions from β-crystallin polypeptides by calpain II, and that a similar process may occur in vivo during cataract formation. It is hypothesized that the insoluble protein produced by calpain II causes cataract by increasing light scatter in the lens.  相似文献   

20.
Urea-washed membranes from embryonic chick lenses (15 days old) and from the cortical and nuclear regions of adult chicken lenses (1 year) have been prepared by repeated centrifugation through discontinuous density gradients. The protein components of the isolated membranes have been examined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and urea. Proteins with molecular weights of 75 000, 56 000, 54 000, 48 000, 34 000, 32 000, 25 000, and 22 000 were present in all the membrane preparations, although their proportions changed during development. One additional protein, molecular weight 70 000, was seen only in the embryonic lens membranes. The greatest developmental change was the increase in 25 000 molecular weight protein from 12% in the embryonic lens to about 45% in the adult lens. Since it has been suggested that this protein is associated with gap junctions, its increase during development may reflect a corresponding increase in the number of gap junctions in the lens.The 50 000 molecular weight protein of embryonic lens membranes and membranes of adult nuclear lens fibers consisted at least partly of δ-crystallin, since δ-crystallin peptides could be identified in tryptic pepetide maps of the isolated protein after in vitro radioiodination. Peptide maps of the 50 000 molecular weight protein of cortical lens fiber membranes contained no identifiable δ-crystallin peptides, although it is possible that modified δ-crystallin peptides may be present. The level of cytoplasmic contamination of the membrane fraction was estimated by preparing lens membranes in the presence of added δ-[35S]crystallin. The results indicated that cytoplasmic contamination contributes significantly to the presence of δ-crystallin in lens membrane preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号