首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-13C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 ± 1.6 and 5.1 ± 0.2%, respectively (mean ± SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-13C]glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by γ-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with γ-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

2.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

3.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

4.
Abstract: 13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

5.
Thiamine deficiency provides an effective model of selective neuronal cell death. 1H and 13C-NMR was used to investigate the effects of thiamine deficiency on the synthesis of amino acids derived from [1-13C]glucose in vulnerable (medial thalamus; MT) compared to non-vulnerable (frontal cortex; FC) brain regions. Following 11 days of thiamine deficiency, a time-point associated with the absence of significant neuronal cell death, regional concentrations of glutamate, glutamine and GABA remained unaffected in FC and MT; however, decreased levels of aspartate in MT at this time-point were a predictor of regional vulnerability. De novo synthesis of glutamate and GABA were unaffected at 11 days of thiamine deficiency, while synthesis of [2-13C]aspartate was significantly impaired. Glucose loading, which has been shown to exacerbate symptoms in patients with thiamine deficiency, resulted in further decreases of TCA cycle flux and reduced de novo synthesis of glutamate, aspartate and GABA in thiamine-deficient (TD) rats. Isotopomer analysis revealed that impaired TCA cycle flux and decreased aspartate synthesis due to thiamine deficiency occurred principally in neurons. Glucose loading deteriorated TD-related decreases in TCA cycle flux, and concomitantly reduced synthesis of aspartate and glutamate in MT.  相似文献   

6.
Abstract: Cerebral metabolism of d [1-13C]glucose was studied with localized 13C NMR spectroscopy during intravenous infusion of enriched [1-13C]glucose in four healthy subjects. The use of three-dimensional localization resulted in the complete elimination of triacylglycerol resonance that originated in scalp and subcutaneous fat. The sensitivity and resolution were sufficient to allow 4 min of time-resolved observation of label incorporation into the C3 and C4 resonances of glutamate and C4 of glutamine, as well as C3 of aspartate with lower time resolution. [4-13C]Glutamate labeled rapidly reaching close to maximum labeling at 60 min. The label flow into [3-13C]glutamate clearly lagged behind that of [4-13C]glutamate and peaked at t = 110–140 min. Multiplets due to homonuclear 13C-13C coupling between the C3 and C4 peaks of the glutamate molecule were observed in vivo. Isotopomer analysis of spectra acquired between 120 and 180 min yielded a 13C isotopic fraction at C4 glutamate of 27 ± 2% (n = 4), which was slightly less than one-half the enrichment of the C1 position of plasma glucose (63 ± 1%), p < 0.05. By comparison with an external standard the total amount of [4-13C]glutamate was directly quantified to be 2.4 ± 0.1 µmol/ml-brain. Together with the isotopomer data this gave a calculated brain glutamate concentration of 9.1 ± 0.7 µmol/ml, which agrees with previous estimates of total brain glutamate concentrations. The agreement suggests that essentially all of the brain glutamate is derived from glucose in healthy human brain.  相似文献   

7.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

8.
Abstract: The metabolic precursors and cerebral compartmentation of the augmented GABA pool induced by vigabatrin, an irreversible inhibitor of GABA transaminase, have been investigated by 13C NMR. Adult rats receiving rat chow ad libitum were given either drinking water only or drinking water containing 2.5 g/L vigabatrin for 7 days. Both groups of animals were infused either with [1,2-13C2]acetate (15 µmol/min/100 g body weight), an exclusive precursor of GABA formation through the glial glutamine pathway, or with [1,2-13C2]glucose (15 µmol/min/100 g body weight), a substrate that can produce GABA through the glial glutamine pathway or by direct metabolism in the neurons. The brains were frozen in situ, extracted with perchloric acid, and analyzed by 13C NMR. In vigabatrin-treated animals [13C]glutamine, a common intermediate for [13C]GABA synthesis from glucose or acetate, was accumulated to similar amounts during infusions with [1,2-13C2]glucose or [1,2-13C2]acetate. However, [13C]GABA accumulation was sevenfold higher during [1,2-13C2]glucose infusions or twofold higher during [1,2-13C2]acetate infusions. These results show that the direct pathway of GABA formation by neuronal metabolism of glucose predominates over the alternative pathway through glial glutamine. Near-equilibrium relationships of the aminotransferases of GABA and aspartate imply that the observed [13C]GABA accumulation occurs initially in the neuronal compartment.  相似文献   

9.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

10.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

11.
Abstract: Primary cultures of cerebral cortical astrocytes were incubated with [U-13C]glutamate (0.5 m M ) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds. Only a maximum of 30% was converted to glutamine directly.  相似文献   

12.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

13.
The magnitude of metabolic activation is greatly underestimated in autoradiographic studies using [1- or 6-14C]glucose compared to parallel assays with [14C]deoxyglucose indicating that most of the label corresponding to the additional [14C]glucose consumed during activation compared to rest is quickly released from activated structures. Label could be lost by net release of [14C]lactate from brain or via lactate exchange between blood and brain. These possibilities were distinguished by comparison of glucose and lactate specific activities in arterial blood and brain before, during, and after generalized sensory stimulation and during spreading cortical depression. Over a wide range of brain lactate concentrations, lactate specific activity was close to the theoretical maximum, i.e. half that of [6-14C]glucose, indicating that exchange-mediated dilution of lactate is negligible and that efflux of [14C]lactate probably accounts for most of the label loss. Low lactate dilution also indicates that dilution of glutamate C4 fractional enrichment in [13C]glucose studies, currently ascribed predominantly to lactate exchange, arises from other unidentified pathways or factors. Alternative explanations for glutamate dilution (presented in Supporting Information) include poorly labeled amino acid pools and oxidative metabolism of minor substrates in astrocytes to first dilute the astrocytic glutamine pool, followed by dilution of glutamate via glutamate–glutamine cycling.  相似文献   

14.
Abstract— The metabolism of γ-hydroxybutyrate (GHB) was studied by following the fate of [1-14C]GHB in mouse brain after an intravenous injection. Cerebral uptake of GHB was rapid and this substance disappeared from brain tissue with a half-life of approx 5 min. Degradation of [1-14C]GHB took place in the brain since 14C was incorporated in amino acids associated with the tricarboxylic acid cycle: the labelling pattern was consistent with the oxidation of GHB via succinate through the cycle, rather than with β-oxidation of GHB. Conversion of [14C]GHB into [14C]GABA prior to oxidation was negligible, thus it is unlikely that the pharmacological action of GHB would be mediated through GABA formation. [14C]GHB oxidation also elicited the signs of metabolic compartmentation of the tricarboxylic acid cycle in the brain (glutamine/glutamate specific radioactivity ratio was about 4).  相似文献   

15.
Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-13C]β-hydroxybutyrate to that of [1,6-13C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate–glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of 13C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-13C]β-hydroxybutyrate as opposed to [1,6-13C]glucose. Our results suggest that the change in aspartate–glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate–aspartate shuttle activity in neurons using β-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only β-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing β-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate–aspartate shuttle.  相似文献   

16.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

17.
Abstract: The present study was undertaken to determine whether polyunsaturated fatty acid metabolism is affected by high glucose levels in cerebral and retinal microvascular endothelial cells. The metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 was studied in cells previously cultured for 5 days in normal (5 m M ) or high (30 m M ) glucose medium. After incubation of retinal endothelial cells with [3-14C]22:5n-3 in the high glucose condition, the formation of labeled 24:6n-3 and 22:6n-3 was increased, and that of labeled 24:5n-3 was decreased, compared with the normal glucose condition. The changes were found for fatty acids esterified in cellular lipids and those released into the medium. After incubation with [1-14C]18:2n-6, levels of all elongation/desaturation products were increased at the expense of the precursor in retinal endothelial cells cultured in high glucose medium. The changes were primarily found for esterified fatty acids, with the release of n-6 fatty acids being minor in both glucose concentrations. By contrast, high glucose levels did not affect the metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 in cerebral endothelial cells. The changes in metabolic activity of retinal endothelial cells were not reflected in the fatty acid composition. The present data suggest that high glucose can increase the desaturation process in retinal but not cerebral endothelial cells. This may produce some lipid abnormalities in retinal microvasculature and contribute to altered vascular function observed in diabetic retinopathy.  相似文献   

18.
Effects of Ketone Bodies on Astrocyte Amino Acid Metabolism   总被引:5,自引:1,他引:4  
Abstract: The effects of acetoacetate and 3-hydroxybutyrate on glial amino acid metabolism were studied in primary cultures of astrocytes. The exchange of nitrogen among amino acids was measured with 15N as a metabolic probe and gas chromatography-mass spectrometry as a tool with which to quantify isotope abundance. Addition of either acetoacetate or 3-hydroxybutyrate (5 m M ) to the incubation medium did not alter the initial rate of appearance of [15N]glutamate in the glia, but it did inhibit transamination of glutamate to [15N]aspartate. Addition of acetoacetate also inhibited formation of [2-15N]glutamine, but 3-hydroxybutyrate had a stimulatory effect. The presence in the medium of sodium acetate (5 m M ) was also associated with diminished production of [15N]aspartate and [2-15N]glutamine with [15N]glutamate as precursor. Studies with [2-15N]glutamine as precursor indicated that treatment of the astrocytes with ketone bodies did not alter flux through the glutaminase pathway. Nor did the presence of the ketone bodies reduce significantly the flux of nitrogen from [15N]GABA to [2-15N]glutamine when the former species served as a metabolic tracer. The concentration of internal citrate increased in the presence of acetoacetate, 3-hydroxybutyrate, and acetate. Studies with purified sheep brain glutamine synthetase showed that citrate inhibited this enzyme. These findings are considered in terms of the known anticonvulsant effect of a ketogenic diet.  相似文献   

19.
Recently, a new experimental model of epilepsy was introduced by the authors [Neurochem. Int. 40 (2002) 413]. This model combines pentylenetetrazole (PTZ)-kindling in senescence-accelerated mice P8 (SAMP8), a genetic model of aging. Since imbalance of glutamate and GABA is a major cause of seizures, the study of glial–neuronal interactions is of primary importance. Nuclear magnetic resonance spectroscopy (NMRS) is an excellent tool for metabolic studies. Thus, we examined whether NMRS when combined with administration of [1-13C]glucose and [1,2-13C]acetate might give valuable insights into neurotransmitter metabolism in this new model of epilepsy and aging. The 2- and 8-month-old SAMP8 were kindled with PTZ alone, received PTZ and phenobarbital (PB), or served as controls. In older animals, PTZ-kindling decreased labeling in glutamate C-4 from [1-13C]glucose, whereas, in the younger mice, labeling in glutamine C-4 was decreased both from [1-13C]glucose and [1,2-13C]acetate. It could be concluded that PTZ-kindling affected astrocytes in younger and glutamatergic neurons in older animals. In the presence of PTZ, phenobarbital decreased labeling of most metabolites in all cell types, except GABAergic neurons, from both labeled precursors in the younger animals. However, in older animals only GABAergic neurons were affected by phenobarbital as indicated by an increase in GABA labeling.  相似文献   

20.
Abstract: The metabolism of [2-13C]glycine in astrogliarich primary cultures obtained from brains of neonatal Wistar rats was investigated using 13C NMR spectroscopy. After a 24-h incubation of the cells in a medium containing glucose, glutamate, cysteine, and [2-13C]glycine, cell extracts and incubation media were analyzed for 13C-labeled compounds. Labeled creatine, serine, and glutathione were identified in the cell extracts. If arginine and methionine were present during the incubation with [2-13C]glycine, the amount of de novo synthesized [2-13C]creatine was two-fold increased, and in addition, 13C-labeled guanidinoacetate was found in cell extracts and in the media after 24 h of incubation. A major part of the [2-13C]glycine was utilized for the synthesis of glutathione in astroglial cells. 13C-labeled glutathione was found in the cell extracts as well as in the incubation medium. The presence of newly synthesized [2-13C]serine, [3-13C]serine, and [2,3-13C]serine in the cell extracts and the incubation medium proves the capability of astroglial cells to synthesize serine out of glycine and to release serine. Therefore, astroglial cells are able to utilize glycine as a precursor for the synthesis of creatine and serine. This proves that at least one cell type of the brain is able to synthesize creatine. In addition, guanidinoacetate, the intermediate of creatine synthesis, is released by astrocytes and may be used for creatine synthesis by other cells, i.e., neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号