首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Treatment of isolated rat adipocytes with tumor-promoting phorbol esters, caused a fivefold stimulation of glucose oxidation, determined as 14CO2 production from [1-14C]glucose and a fivefold increase in the rate of lipid synthesis from [14C]glucose. Treatment of the cells with 12-O-tetradecanoylphorbol 13-acetate increased the rate of 86Rb+ uptake into the cells. Also phospholipase C was able to stimulate the rate of glucose oxidation; phospholipase C and 12-O-tetradecanoylphorbol 13-acetate stimulated glucose oxidation in a non-synergistic fashion, indicating a common mechanism for their action. Active phorbol esters and, in part, also phospholipase C, caused a translocation of protein kinase C activity from the soluble to the particulate fraction of the adipocytes. This process was rapid, being complete 30 s after the addition of phorbol ester, and resulted in the appearance of the kinase mainly in the mitochondrial and plasma membrane fractions. A comparison between the binding characteristics of adipocyte protein kinase C and the metabolic effects of the phorbol esters on the adipocytes revealed that the dose-response relationship did not correlate with binding of the phorbol esters, but, rather, a correlation was observed between the dose of phorbol esters required for translocation of protein kinase C and the intracellular effects. The results indicate that the intracellular translocation of protein kinase C might be a trigger for the effects of phorbol esters on the adipocyte and that binding of the esters to protein kinase C is not a sufficient event to cause this effect. Furthermore, it is suggested that activation of protein kinase C might be partly the action of hormones, such as insulin, on the fat cells.  相似文献   

2.
We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid transport in muscle.  相似文献   

3.
The regulation of 3-O-methyl-D-glucose (OMG) uptake by insulin and phorbol esters was studied in cultured human skin fibroblasts. Insulin rapidly stimulated OMG uptake through a mechanism independent of new protein synthesis. Maximal insulin effect was reached in 30 min and remained constant up to 12 h. The protein kinase C activators 12-O-tetradecanoyl phorbol 13-acetate (TPA) and phorbol 12,13-dibutyrate (PdBU) promoted an initial rapid stimulation followed by a secondary long-term rise of OMG influx. This latter effect of phorbol esters on OMG influx began after 1 h, reached a maximum in 12-15 h, and was prevented by the simultaneous addition of protein synthesis inhibitors, suggesting that phorbol esters increased the synthesis of new glucose transporters. In accord with this interpretation, phorbol esters, but not insulin, increased mRNA levels for two distinct glucose transporters (GLUT1 and GLUT3) in human fibroblasts. Both the rapid and the long-term effects of phorbol esters on OMG influx were dose-dependent and half-maximal stimulations occurred at 15 nM for both PdBU and TPA. Kinetic analysis of OMG uptake indicated that both effects of phorbol esters were associated with an increase in the Vmax of the transport process, with no significant changes of the Km (4-6 mM). These results suggest that, in human fibroblasts, phorbol esters, unlike insulin, produce a long-term stimulation of OMG uptake, which is dependent upon protein synthesis and is associated with increased levels of GLUT1 and GLUT3 mRNA.  相似文献   

4.
Numerous studies have shown a correlation between changes in protein kinase C (PKC) distribution and/or activity and insulin resistance in skeletal muscle. To investigate which PKC isoforms might be involved and how they affect insulin action and signaling, studies were carried out in rat soleus muscle incubated with phorbol esters. Muscles preincubated for 1 h with 1 microM phorbol 12,13-dibutyrate (PDBu) showed an impaired ability of insulin to stimulate glucose incorporation into glycogen and a translocation of PKC-alpha, -betaI, -theta, and -epsilon, and probably -betaII, from the cytosol to membranes. Preincubation with 1 microM PDBu decreased activation of the insulin receptor tyrosine kinase by insulin and to an even greater extent the phosphorylation of Akt/protein kinase B and glycogen synthase kinase-3. However, it failed to diminish the activation of phosphatidylinositol 3'-kinase by insulin. Despite these changes in signaling, the stimulation by insulin of glucose transport (2-deoxyglucose uptake) and glucose incorporation into lipid and oxidation to CO2 was unaffected. The results indicate that preincubation of skeletal muscle with phorbol ester leads to a translocation of multiple conventional and novel PKC isoforms and to an impairment of several, but not all, events in the insulin-signaling cascade. They also demonstrate that these changes are associated with an inhibition of insulin-stimulated glycogen synthesis but that, at the concentration of PDBu used here, glucose transport, its incorporation into lipid, and its oxidation to CO2 are unaffected.  相似文献   

5.
To determine whether insulin activates protein kinase C in BC3H-1 myocytes, we evaluated changes in protein phosphorylation, protein kinase activities, and the intracellular translocation of protein kinase C activity in response to insulin and phorbol esters. Phorbol 12-myristate 13-acetate (PMA), but not insulin, stimulated the phosphorylation of an acidic Mr 80,000 protein which has been shown to be an apparently specific marker for protein kinase C activation. In addition, PMA, but not insulin, stimulated the rapid association of protein kinase C activity with a cellular particulate fraction. In contrast to these differences, both insulin and PMA stimulated the phosphorylation of ribosomal protein S6 and activated a ribosomal protein S6 kinase in cell-free extracts from cells exposed to these agents. In cells exposed to high concentrations of PMA for 16 h, protein kinase C activity and immunoreactivity were abolished, without changes in cellular morphology. Under these conditions, insulin, but not PMA, stimulated phosphorylation of the ribosomal protein S6 in intact cells and activated the S6 kinase in cell-free extracts derived from insulin-treated intact cells. We conclude that: insulin does not appear to activate protein kinase C in BC3H-1 myocytes, at least as assessed by phosphorylation of the Mr 80,000 protein; both insulin and PMA activate an S6 protein kinase in these cells; and insulin can promote S6 phosphorylation and activate the S6 kinase normally in protein kinase C-deficient cells. Activation of the S6 kinase by insulin and PMA, although apparently proceeding through different mechanisms, may explain some of the similar biological actions of these compounds in BC3H-1 myocytes.  相似文献   

6.
Exposure of freshly isolated rat hepatocytes to tumor-promoting phorbol esters like phorbol 12-myristate 13-acetate resulted in a time- and concentration-dependent translocation of protein kinase C from the soluble to the particulate fraction of the cells. No such disappearance of soluble protein kinase C activity was observed with either epidermal growth factor or insulin, indicating that activation of protein kinase C is not necessarily involved in the short-term metabolic action of physiological growth factors on rat hepatocytes.  相似文献   

7.
Mitogenic stimulation of mammalian cells results in increased serine phosphorylation of ribosomal protein S6. Phorbol esters, which stimulate protein kinase C activity, can also increase S6 phosphorylation. In order to further investigate the role of protein kinase C in the activation S6 kinase, we studied the stimulation of an S6 kinase activity in response to phorbol ester and epinephrine in a renal epithelial cell line, Madin-Darby canine kidney cells (MDCK). In these cells, S6 phosphorylating activity in cytosolic extracts was increased following the addition of phorbol ester to the intact cells. S6 kinase and protein kinase C activities were measured in separate fractions prepared by DEAE-Sephacel fractionation of cytosolic extracts prepared from the same cells. The time course and dose-response curves for the effects of phorbol 12-myristate 13-acetate (PMA) on S6 kinase activity were similar to those for its effects on protein kinase C binding to the membrane fraction, indicating that S6 kinase activation was correlated with protein kinase C activation. Epinephrine, acting via alpha1-adrenergic receptors, also stimulated S6 kinase activity in MDCK cells; the magnitude of this effect was similar to that of PMA. However, epinephrine causes only a slight and transient association of protein kinase C with the membrane. The effect of epinephrine on S6 kinase activity, unlike that of PMA, was dependent on the presence of extracellular calcium. A23187, a calcium ionophore, could also stimulate S6 kinase activity. These results suggest that S6 kinase can be activated through more than one signaling pathway in MDCK cells. The properties of the PMA-stimulated S6 kinase were further investigated following partial purification of the enzyme. The S6 kinase was distinct from protein kinase C by several criteria. Noteably, the S6 kinase was highly specific for S6 as substrate. These results show that phorbol esters, acting through protein kinase C, stimulate the activity of a unique S6 kinase. This S6 kinase can also be activated through a signaling pathway that appears to be dependent on increased intracellular calcium.  相似文献   

8.
The precise role of protein kinase C in insulin action in skeletal muscle is not well defined. Based on the fact that inhibitors of protein kinase C block some insulin effects, it has been concluded that some of the biological actions of insulin are mediated via protein kinase C. In this study, we present evidence that inhibitors of protein kinase C such as staurosporine, H-7 or polymyxin B cannot be used to ascertain the role of protein kinase C in skeletal muscle. This is based on the following experimental evidences: a) staurosporine, H-7 and polymyxin B markedly block in muscle the effect of insulin on System A transport activity; however, this effect of insulin is not mimicked in muscle by TPA-induced stimulation of protein kinase C, b) H-7 and polymyxin B block insulin action on System A transport activity in an additive manner to the inhibitory effect of phorbol esters, c) staurosporine, H-7 and polymyxin B block the effect of insulin on lactate production, a process that is activated by insulin and TPA in an additive fashion, and d) staurosporine completely blocks the tyrosine kinase activity of insulin receptors partially purified from rat skeletal muscle.Abbreviations MeAIB a-(methyl)aminoisobutyric acid - TPA 12-O-tetradecanoylphorbol-13-acetate - H-7 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine  相似文献   

9.
Insulin increases membrane protein kinase C activity in rat diaphragm   总被引:5,自引:0,他引:5  
Calcium/phospholipid-dependent protein kinase activity (protein kinase C) was identified in rat diaphragm membrane and cytosol fractions by means of in vitro phosphorylation either of histones or of a specific 87 kDa protein substrate, combined with phosphopeptide-mapping techniques. Both insulin and tumor-promoting phorbol ester treatment of the diaphragm preparations led to increased protein kinase C activity in the membrane fractions. In contrast to the phorbol ester, however, insulin did not induce a concomitant decrease in cytosolic activity, indicating that translocation of the enzyme had not taken place. Thus, insulin appears to increase specifically membrane protein kinase C activity in rat skeletal muscle, possibly through a mechanism not identical to that induced by phorbol esters.  相似文献   

10.
The tumor-promoting phorbol esters have insulinomimetic effects in several tissues. Employing two different assay systems, we have compared the effects of phorbol ester and insulin on the activity and intracellular distribution of the Ca++ and phospholipid dependent protein kinase (protein kinase C) in isolated rat adipocytes. Phorbol ester leads to a prompt depletion of kinase activity from the cytosolic fraction and appearance of activity in membrane extracts; neither of these effects is mimicked by insulin. These results, taken together with other data, emphasize important divergences between the actions of these agonists and suggest that changes in protein kinase C activity or intracellular distribution are not a necessary concomitant of the cascade of insulin action.  相似文献   

11.
We have used differentiated L6 myocytes to investigate the regulation of glucose transporter gene expression by insulin and insulin-like growth factor-1 (IGF-1). Chronic exposure to insulin (1 microM) or IGF-1 (10 nm) resulted in a 2- to 5-fold stimulation of 3H-2-deoxy-D-glucose uptake and a corresponding increase in the expression of rat brain/HepG2-type glucose transporter mRNA (GTmRNA) and immunoreactive transporter protein. The dose responses to both insulin and IGF-1 for stimulation of glucose uptake were paralleled by the expression of GTmRNA. Glucose uptake and GTmRNA levels were half maximally stimulated by 350 and 100 nM insulin, respectively, or by 2 nM IGF-1. Comparison of receptor occupancy with stimulation of glucose uptake and GTmRNA expression suggests that insulin exerts its effects through the IGF-1 receptor. Fibroblast growth factor, epidermal growth factor, platelet-derived growth factor, and phorbol ester had little or no effect on GTmRNA expression. These results demonstrate that the IGF-1 receptor mediates chronic regulation of transporter mRNA expression and protein synthesis and activity in cultured rat muscle cells.  相似文献   

12.
Insulin resistance has been implicated as one of the best predictors for type 2 diabetes. Growing evidence propose the involvement of microRNAs (miRNAs) as short regulatory molecules in modulating and inducing resistance. In this regard, we have investigated the role of three selected miRNAs in insulin resistance development (miR-135, miR-202, and miR-214), via assessing glucose uptake levels in C2C12 and L6 muscle cell lines. Interestingly, miRNA-transfected cells demonstrated a significantly different glucose uptake compared to the positive control cells. In addition, we evaluated the expression levels of three putative miRNA target genes (Rho-associated coiled-coil containing protein kinase 1, serine/threonine kinase 2, and vesicle-associated membrane protein 2) in transfected cells, recruiting luciferase assay. Our results indicated the targeting and downregulation of Rho-associated coiled-coil containing protein kinase 1 and serine/threonine kinase 2 genes in all miR-transfected cell lines ( P ≤ 0.05), but not for vesicle-associated membrane protein 2. MiRNA upregulation led to the poor stimulation of glucose uptake through insulin and developed insulin-resistant phenotype in both muscle cell lines. Our study showed the role of three miRNAs in the induction of insulin resistance in cell lines and making them prone to type 2 diabetes development.  相似文献   

13.
In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.  相似文献   

14.
Glucose uptake in human and animal muscle cells in culture   总被引:5,自引:0,他引:5  
Human muscle cells were grown in culture from satellite cells present in muscle biopsies and fusion-competent clones were identified. Hexose uptake was studied in fused myotubes of human muscle cells in culture and compared with hexose uptake in myotubes of the rat L6 and mouse C2C12 muscle cell lines. Uptake of 2-deoxyglucose was saturable and showed an apparent Km of about 1.5 mM in myotubes of all three cell types. The Vmax of uptake was about 6000 pmol/(min.mg protein) in human cells, 4000 pmol/(min.mg protein) in mouse C2C12 muscle cells, and 500 pmol/(min.mg protein) in L6 cells. Hexose uptake was inhibited approximately 90% by cytochalasin B in human, rat, and mouse muscle cell cultures. Insulin stimulated 2-deoxyglucose uptake in all three cultures. The hormone also stimulated transport of 3-O-methylglucose. The sensitivity to insulin was higher in human and C2C12 mouse myotubes (half-maximal stimulation observed at 3.5 X 10(-9) M) than in rat L6 myotubes (half-maximal stimulation observed at 2.5 X 10(-8) M). However, insulin (10(-6) M) stimulated hexose uptake to a larger extent (2.37-fold) in L6 than in either human (1.58-fold) or mouse (1.39-fold) myotubes. It is concluded that human muscle cells grown in culture display carrier-mediated glucose uptake, with qualitatively similar characteristics to those of other muscle cells, and that insulin stimulates hexose uptake in human cells. These cultures will be instrumental in the study of human insulin resistance and in investigations on the mechanism of action of antidiabetic drugs.  相似文献   

15.
Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an approximately 3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport approximately 50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by approximately 50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.  相似文献   

16.
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O? = 21% (Control)] or normobaric hypoxia [fraction of inspired O? = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g?1·h?1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g?1·h?1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.  相似文献   

17.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

18.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

19.
Tumor promoting phorbol esters stimulate Ca++ phospholipid-dependent protein kinase C. It has been suggested that this enzyme regulates the functional properties of different cell membrane receptors. In this study we investigated the effect of phorbol esters on alpha 1-adrenoceptor binding and phosphatidylinositol metabolism in cultured smooth muscle cells derived from rabbit aorta. Treatment of these cells with biologically active phorbol esters for 15 min. to 2 hours caused a marked decrease of norepinephrine stimulation of inositol phospholipid metabolism and a 3 fold decrease in agonist affinity for 125I-HEAT binding to alpha 1-adrenoceptors in the intact smooth muscle cells. The ability of phorbol esters to modulate alpha 1-adrenoceptor responsiveness suggests that activation of protein kinase C may represent an important mechanism regulating alpha 1-adrenergic receptor functional properties.  相似文献   

20.
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号