首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
张柳平  姚淑敏  林哲  崔峰 《昆虫学报》2013,56(5):566-569
马拉硫磷是一种高效低毒的有机磷杀虫剂, 分子量大且结构特殊, 广泛用于农业害虫的防治。羧酸酯酶突变是昆虫对有机磷类杀虫剂产生代谢抗性的重要机制之一。本实验室前期已从棉蚜Aphis gossypii、 褐飞虱Nilaparvata lugens、 斜纹夜蛾Spodoptera litura、 家蚕Bombyx mori、 异色瓢虫Harmonia axyridis、 赤拟谷盗Tribolium castaneum和西方蜜蜂Apis mellifera中各克隆了一个非特异性羧酸酯酶基因, 通过体外定点突变构建了G/A151D和W271L两种突变体, 并进行了原核细胞表达和纯化。本实验在体外测定了这7种昆虫野生型和两种突变型羧酸酯酶对马拉硫磷的降解。结果显示: 棉蚜、 西方蜜蜂、 斜纹夜蛾、 赤拟谷盗的野生型羧酸酯酶能够降解马拉硫磷, 两个突变并不能提高它们的降解活性, 而家蚕、 异色瓢虫和褐飞虱的野生型羧酸酯酶不能降解马拉硫磷, G/A151D和/或W271L突变能使这些酯酶获得马拉硫磷羧酸酯酶(MCE)的活性, 有可能使这些昆虫对马拉硫磷产生抗性。不同物种的MCE活性相差较大, 斜纹夜蛾的MCE活性最高, 其kcat/Km值为1.8~1.9 L/μmol·min, 其次是赤拟谷盗, 其Kcat/Km值为0.87~0.95 L/μmol·min, 其他昆虫的MCE活性相对较低, 相差可高达10倍。  相似文献   

2.
Resistance of the blowfly, Lucilia cuprina, to organophosphorus (OP) insecticides is due to mutations in LcalphaE7, the gene encoding carboxylesterase E3, that enhance the enzyme's ability to hydrolyse insecticides. Two mutations occur naturally, G137D in the oxyanion hole of the esterase, and W251L in the acyl binding pocket. Previous in vitro mutagenesis and expression of these modifications to the cloned gene have confirmed their functional significance. G137D enhances hydrolysis of diethyl and dimethyl phosphates by 55- and 33-fold, respectively. W251L increases dimethyl phosphate hydrolysis similarly, but only 10-fold for the diethyl homolog; unlike G137D however, it also retains ability to hydrolyse carboxylesters in the leaving group of malathion (malathion carboxylesterase, MCE), conferring strong resistance to this compound. In the present work, we substituted these and nearby amino acids by others expected to affect the efficiency of the enzyme. Changing G137 to glutamate or histidine was less effective than aspartate in improving OP hydrolase activity and like G137D, it diminished MCE activity, primarily through increases in Km. Various substitutions of W251 to other smaller residues had a broadly similar effect to W251L on OP hydrolase and MCE activities, but at least two were quantitatively better in kinetic parameters relating to malathion resistance. One, W251G, which occurs naturally in a malathion resistant hymenopterous parasitoid, improved MCE activity more than 20-fold. Mutations at other sites near the bottom of the catalytic cleft generally diminished OP hydrolase and MCE activities but one, F309L, also yielded some improvements in OP hydrolase activities. The results are discussed in relation to likely steric effects on enzyme-substrate interactions and future evolution of this gene.  相似文献   

3.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

4.
The cloned genes encoding carboxylesterase E3 in the blowfly Lucilia cuprina and its orthologue in Drosophila melanogaster were expressed in Sf9 cells transfected with recombinant baculovirus. Resistance of L. cuprina to organophosphorus insecticides is due to mutations in the E3 gene that enhance the enzyme's ability to hydrolyse insecticides. Previous in vitro mutagenesis and expression of these modifications (G137D, in the oxyanion hole and W251L, in the acyl pocket) have confirmed their functional significance. We have systematically substituted these and nearby amino acids by others expected to affect the hydrolysis of pyrethroid insecticides. Most mutations of G137 markedly decreased pyrethroid hydrolysis. W251L was the most effective of five substitutions at this position. It increased activity with trans permethrin 10-fold, and the more insecticidal cis permethrin >130-fold, thereby decreasing the trans:cis hydrolysis ratio to only 2, compared with >25 in the wild-type enzyme. Other mutations near the bottom of the catalytic cleft generally enhanced pyrethroid hydrolysis, the most effective being F309L, also in the presumptive acyl binding pocket, which enhanced trans permethrin hydrolysis even more than W251L. In these assays with racemic 1RS cis and 1RS trans permethrin, two phases were apparent, one being much faster suggesting preferential hydrolysis of one enantiomer in each pair as found previously with other esterases. Complementary assays with individual enantiomers of deltamethrin and the dibromo analogue of cis permethrin showed that the wild type and most mutants showed a marked preference for the least insecticidal 1S configuration, but this was reversed by the F309L substitution. The W251L/F309L double mutant was best overall in hydrolysing the most insecticidal 1R cis isomers. The results are discussed in relation to likely steric effects on enzyme-substrate interactions, cross-resistance between pyrethroids and malathion, and the potential for bioremediation of pyrethroid residues.  相似文献   

5.
Organophosphate (OP) insecticide resistance in certain strains of Musca domestica is associated with reduction in the carboxylesterase activity of a particular esterase isozyme. This has been attributed to a 'mutant ali-esterase hypothesis', which invokes a structural mutation to an ali-esterase resulting in the loss of its carboxylesterase activity but acquisition of OP hydrolase activity. It has been shown that the mutation in Lucilia cuprina is a Gly137-->Asp substitution in the active site of an esterase encoded by the Lc alpha E7 gene (Newcomb, R.D., Campbell, P.M., Ollis, D.L., Cheah, E., Russell, R.J., Oakeshott, J.G., 1997. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA 94, 7464-7468). We now report the cloning and characterisation of the orthologous M. domestica Md alpha E7 gene, including the sequencing of cDNAs from the OP resistant Rutgers and OP susceptible sbo and WHO strains. The Md alpha E7 gene has the same intron structure as Lc alpha E7 and encodes a protein with 76% amino acid identity to Lc alpha E7. Comparisons between susceptible and resistance alleles show resistance in M. domestica is associated with the same Gly137-->Asp mutation as in L. cuprina. Bacterial expression of the Rutgers allele shows its product has OP hydrolase activity. The data indicate identical catalytic mechanisms have evolved in orthologous Md alpha E7 and Lc alpha E7 molecules to endow diazinon-type resistance on the two species of higher Diptera.  相似文献   

6.
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.  相似文献   

7.
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.  相似文献   

8.

Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a cosmopolitan pest species that can feed on more than 1000 host plant species. Historically, organophosphate (OP) and carbamate insecticides have been used to control this extremely polyphagous pest. However, its ability to develop acaricide resistance rapidly has led to failure in control. Mutations in acetylcholinesterase gene (ace), the target-site of OP and carbamate insecticides, have been reported to be one of the major mechanisms underlying this developing resistance. In this study, mutations previously associated with resistance (G119S, A201S, T280A, G328A, F331W/Y) in ace have been screened in 37 T. urticae populations collected across Turkey. All mutations were found in various populations, except G119S. Almost all populations had F331W/Y mutation (being fixed in 32 populations), whereas only two populations harboured A201S mutation, but not fixed. On the other hand, more than half of the populations contained T280A and G328A mutations. In addition, the presence of same haplotypes in populations originating from distinct geographic locations and a wide variety of ace haplotypes might indicate multiple origins of F331W and F331Y mutations; however, this needs further investigation. The results of area-wide screening showed that ace mutations are widely distributed among T. urticae populations. Therefore, the use of this group of insecticides should be limited or only rotational use might be regarded as a resistance management tool due to its different mode of action from other main acaricide groups in T. urticae control across Turkey.

  相似文献   

9.
Taşkin V  Kence M  Göçmen B 《Genetika》2004,40(4):478-481
Organophosphate (OP) insecticides (parathion/diazinon) resistance in housefly (Musca domestica L.) is associated with the change in carboxylesterase activity. The product of alpha E7 gene, which is a member of alpha-esterase gene cluster, is probably playing a role in detoxification of the xenobiotic esters. In parathion/diazinon resistant M. domestica species Gly137 to Asp substitution was found in the active center of the product of alpha E7 gene. In malathion (an OP) resistant M. domestica strains Trp251 to Ser substitution was identified in the active center of the Md alpha E7. In our research, to understand the allelic diversity of the Md alpha E7, the gene was partially sequenced from four different housefly strains from different localities (Guatemala, Manhattan (USA), Colombia (USA) and Thailand). It was found out that; in Thailand strain one allele has Cys residue at the position of 251, the other allele contains a Trp for the same site. In Colombia strain, one allele has Asp137, the other allele contains a Gly residue at this point. The Manhattan and Guatemala strains have Asp137 and Trp251 residues on their both alleles at these two different positions.  相似文献   

10.
该文分别以。A-乙酸萘酯和β-乙酸萘酯为底物比较了22种常用有机磷药剂对棉铃虫 Helicoverpa armigera羧酸酯酶的抑制作用。结果表明,棉铃虫羧酸酯酶对底物空间构型比较敏感,敌敌畏、对氧磷、地亚农、喹硫磷、马拉氧磷、异稻瘟净、增效磷、杀螟松抑制棉铃虫羧酸酯酶的能力较强。有机磷药剂抑制棉铃虫羧酸酯酶能力与其化学结构显著相关,氧化型的有机磷抑制能力明显强于硫代型的有机磷;乙氧基取代的有机磷抑制能力明显强于甲氧基取代的有机磷。  相似文献   

11.
Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.  相似文献   

12.
The resistance levels to carbamate (CB) and organophosphate (OP) insecticides were determined by topical application in 14 field strains of Nilaparvata lugens. The resistance levels of N. lugens to CB and OP were 1.3–47.5-fold and 1.4–14.4-fold higher than a susceptible strain, respectively. A quantitative sequencing (QS) protocol was established to determine the allele frequencies of four acetylcholinesterase point mutations putatively associated with CB and OP resistance. The allele frequencies of the four mutations (G119A, F/Y330S, F331H and I332L) in field strains' ranges are ca. 0.0–51.7%, 0.0–88.9%, 5.1–56.0% and 6.7–57.3%, respectively. The F331H and I332L were tightly linked to each other, suggesting that these mutations may occur simultaneously. In correlation analysis, G119A was not well correlated with actual resistance levels (r2 = < 0.232), whereas F331H and I332L showed a better correlation with the resistance levels of benzofuranyl methylcarbamates (r2 = 0.595). This finding indicates that F331H and I332L mutation frequencies may be used as molecular markers for detecting carbamate resistance in N. lugens. A QS protocol detecting the F331H and I332L mutation frequencies could therefore be employed as a supportive tool for the rapid monitoring of CB insecticide resistance levels in N. lugens.  相似文献   

13.
The peach-potato aphid Myzus persicae (Sulzer) has developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, termed knockdown resistance (kdr). This reduced sensitivity is caused by two mutations, L1014F (kdr) and M918T (super-kdr), in the para-type voltage-gated sodium channel. We have developed a diagnostic dose bioassay to detect kdr and provide preliminary information on the genotype present. We also developed two allelic discrimination PCR assays to determine precisely the genotypes of the two mutations (L1014F and M918T) in individual M. persicae using fluorescent Taqman MGB probes. In combination with assays for elevated carboxylesterase levels and modified acetylcholinesterase (MACE), this suite of assays allows for rapid high-throughput diagnosis, in individual aphids, of the three main resistance mechanisms of practical importance in the UK.  相似文献   

14.
15.
The voltage-gated sodium channel is the primary target site of pyrethroid insecticides. In some insects, super knockdown resistance (super-kdr) to pyrethroids is caused by point mutations in the linker fragment between transmembrane segments 4 and 5 of the para-type sodium channel protein domain II (IIS4-5). Here, we identify two mutations in the IIS4-5 linker of the para-type sodium channel of the whitefly, Bemisia tabaci: methionine to valine at position 918 (M918V) and leucine to isoleucine at position 925 (L925I). Although each mutation was isolated independently from strains >100-fold resistant to a pyrethroid (fenpropathrin) plus organophosphate (acephate) mixture, only L925I was associated with resistance in strains derived from the field in 2000 and 2001. The L925I mutation occurred in all individuals from nine different field collections that survived exposure to a discriminating concentration of fenpropathrin plus acephate. Linkage analysis of hemizygous male progeny of unmated heterozygous F1 females (L925I×wild-type) shows that the observed resistance is tightly linked to the voltage-gated sodium channel locus. The results provide a molecular tool for better understanding, monitoring and managing pyrethroid resistance in B. tabaci.  相似文献   

16.
Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala301 site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach.  相似文献   

17.
昆虫抗药性和昆虫毒理动力学(英文)   总被引:1,自引:0,他引:1  
不断地使用一种杀虫药剂防治昆虫,会导致昆虫产生抗药性。对昆虫抗药性资料进行广泛综述时,发现了仅单独的解毒作用不能被解释为家蝇对有机氯杀虫药剂产生高抗性原因。作为一个基因。家蝇可以对有机氯产生比对有机磷杀虫剂更高的抗药性,尽管有机磷杀虫剂一般在虫体内是不太稳定的。考虑到昆虫毒理的动力学,杀虫药剂的穿透作用更显示出其实际的重要性。根据穿透和解毒的速率,慢的穿透作用是解毒作用的一个限制因子。防治敏感和抗性昆虫的观察结果,可以划出物理和生物因子之间关系的几种相关曲线图解。这些相关性不仅能说明家蝇对有机磷和有机氯杀虫剂的抗性程度,而且也助于选择出新的杀虫毒剂。  相似文献   

18.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

19.
Abstract  In field control of insects with insecticides, insects could develop different degrees of resistance. When resistance data were reviewed more extensively, it was found that detoxication alone cannot explain very high resistance of house flies to OC1 (organochlorine) insecticides. As a group, flies can develop much higher resistance to OC1 than to OP (organophosphorus) insecticides. although OPs are generally less stable in insects. With the consideration of the dynamics of insect toxicology. one can readily realize the importance of penetration. Based on the rates of penetration and detoxication. slow penetration is a limiting factor for detoxication. To further explain the observed results on the control of S (susceptible) 'and R (resistant) insects, several correlation curves were plotted. on the relationship between physical and biological factors. These relationships not only indicate approximate degrees of resistance of flies to OPs and OCls, but also help select new toxicants. For example, fast speed of action index of insecticides can produce lower resistance, and the analysis of the joint action of insecticides helps evaluate the types (same or different) of mode of action for controlling resistant insects.  相似文献   

20.
Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号