首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the proliferation of transplanted colony forming units (CFUs) was investigated in lethally irradiated mice, pretreated by methods known to accelerate hemopoietic recovery after sublethal irradiation. Prospective recipients were exposed to either hypoxia, vinblastine or priming irradiation and at different intervals thereafter lethally irradiated and transplanted with bone marrow. Repopulation of CFUs was determined by counting the number of splenic colonies in primary recipients or by retransplantation. Regeneration of grafted CFUs was greatly accelerated and their self-renewal capacity increased in mice grafted within two days after hypoxia. Also the number of splenic colonies formed by grafted syngeneic CFUs as well as by C57BL parent CFUs growing in BC3F1 hosts was significantly increased. The effect was not dependent on the seeding efficiency of CFUs and apparently resulted from hypoxia induced changes in the hosts physiological environment. Proliferative capacity of grafted CFUs increased remarkably in hosts receiving vinblastine two or four days prior to irradiation. Priming irradiation given six days before main irradiation accelerated, given two days before impaired regeneration of CFUs. The increased rate of regeneration was not related to the cellularity of hemopoietic organs at the time of transplantation. The growth of CFUs in diffusion chambers implanted into posthypoxic mice was only slightly improved which does indicate that the accelerated regeneration of CFUs in posthypoxic mice is mainly due to the changes in the hemopoietic microenvironment. A short conditioning of transplanted CFUs by host factor(s) was sufficient to improve regeneration. The results might suggest that the speed of hemopoietic regeneration depends on the number of CFUs being induced to proliferate shordy after irradiation, rather than on the absolute numbers of CFUs available to the organism.  相似文献   

2.
Studies were carried out to gain an insight into the mechanisms underlying WBH induced radioprotection. The plasma levels of IL-1α, IL-6, TNF-α and GM-CSF, were elevated in WBH treated mice between 2 and 6 h after treatment. The total nucleated cell count of hemopoietic tissues such as spleen, thymus, bone marrow and peripheral blood showed drastic reduction without recovery until death in mice treated with TBI. However, the nucleated cell count in the above tissues showed significant recovery after initial drop in WBH and WBH+TBI treated groups and reached to a normal level by day 7 and day 28, respectively. The total WBC and RBC count in peripheral blood recovered to a control level by day 28 after treatment. Significant number of endogenous spleen colonies were detected, 14 days after TBI in WBH pre-treated mice whereas no such spleen colonies could be detected in TBI treated group. The transplantation of bone marrow derived from control, WBH, TBI and WBH+TBI treated groups of mice to lethally irradiated mice (8 Gy) showed formation of spleen colonies only in mice which received bone marrow from control, WBH and WBH+TBI treated groups. Transplantation of the bone marrow from these groups of mice resulted in prolonged survival of lethally irradiated mice as compared to mice receiving bone marrow from TBI treated mice. These results seem to suggest that WBH induced radioprotection of mice could be due to immunomodulation manifested through induction of cytokines responsible for protection and proliferative response, leading to accelerated recovery from hemopoietic damage-a major cause of radiation induced death.  相似文献   

3.
4.
Conditioned medium from the human tumor cell line HBT 5637 possesses a unique hematopoietic activity, originally termed hemopoietin-1. Hemopoietin-1 alone does not stimulate bone marrow colony formation or proliferative responsesin vitro, but rather potentiates responses to other hematopoietic growth factors, such as CSF-1 and GM-CSF. In studies designed to characterize the molecular nature of this factor, it was found by molecular, biochemical biological and serological criteria that all the hemopoietin-1 like activity could be attributed to IL-1. The therapeutic potential of IL-1 was then tested in a system where myelopoiesis is depressed by whole body irradiation. After 750 R irradiation, mice were administered IL-1 twice daily for the duration of the experiment. Mice which received IL-1 treatment had an accelerated recovery of marrow colony forming capacity which was also reflected by significantly higher blood neutrophil levels as compared to control irradiated mice. IL-1 treated irradiated mice also had a significant increase in resistance to bacterial challenge 14 days post irradiation. Thus, IL-1 treatment was effective in augmenting myelopoiesis following sublethal whole body irradiation. The effects of the IL-1 treatment on the recovery of lymphocyte numbers was also assessed. Here the IL-1 treated irradiated mice had fewer lymphocytes and depressed mitogen responses by spleen cells. Indeed the thymus of the IL-1 treated irradiated mice remained chronically hypoplastic for the duration of the experiment. Although IL-1 treatment increased myeloid progenitors in the bone marrow, it caused a decrease in the frequency of pre-B cells. Thus, IL-1 administration is an effective treatment for accelerating myeloid recovery following the cytore ductive effects of irradiation, but the myelopoietic augmentation may be at the expense of lymphoid recovery.  相似文献   

5.
The immunomodulator AS101 has recently been found to have radioprotective properties when injected prior to sublethal and lethal doses of irradiation. In addition, this compound was found to protect mice from hemopoietic damage caused by sublethal doses of cyclophosphamide (CYP) and to increase the rate of survival of mice treated with lethal doses of CYP. AS101 was previously shown to exert a synergistic effect with the PKC-inducer bryostatin in cytokine secretion in vitro. The present studies were designed to evaluate the effects of in vivo combined treatment with AS101 and bryostatin on bone marrow and spleen cellularity and on the number of committed progenitors in the bone marrow at various points of time after their treatment with a sublethal dose of CYP or irradiation. In addition, the combined effect was tested on the survival of mice irradiated with a lethal dose of irradiation. Our data show the presence of synergism which greatly enhances the number of bone marrow and spleen cells 48 hr and 9 days after CYP treatment or irradiation. The combined effect was also demonstrated when bone marrow colony-forming units granulocyte-macrophage (CFU-GM) progenitor cells were evaluated. Moreover, AS101 and bryostatin synergized in their protective effects against lethal damages of irradiation. These results strongly suggest that bryostatin, which lacks tumor-promoting activity, is a particularly good candidate in combination with AS101 for treatment in vivo in counteracting chemotherapy- or radiation-induced hematopoietic suppression or in generally improving the restoration of immune response under conditions involving immune or hemopoietic damage.  相似文献   

6.
We studied the ability of the hemopoietic organ stroma to recover from damage inflicted by 5 or 7 Gy gamma radiation administered during a period of stromal growth in 4-week-old mice. Irradiation resulted in an immediate depletion of femoral colony-forming fibroblastic progenitors (CFU-F) down to 10-20% of age-matched control values. A full recovery to normal numbers occurred between 120 and 240 days after irradiation and was followed by a secondary decrease 1 year after irradiation. This secondary decrease was accompanied by a decrease in the femoral CFU-S and CFU-C content. Femoral CFU-F attained normal numbers and it was demonstrated to occur from surviving CFU-F and could not be enhanced or prolonged following infusion of unirradiated bone marrow cells after irradiation. During the transient CFU-F recovery the hemopoietic stroma remained severely damaged as judged by the regenerative capacity of spleen and femur stroma after subcutaneous implantation, and the ability of the spleen to accumulate CFU-S in response to lipopolysaccharide injection. We have reported earlier that in similarly irradiated adult mice, no restoration of femoral CFU-F was observed. This difference between 4-week-old and adult mice could not be explained by a difference in in vitro radiosensitivity of CFU-F or in their in vivo regeneration kinetics following irradiation and subsequent lipopolysaccharide injection. We conclude from these observations that the recovery kinetics of the CFU-F population is different in young and adult irradiated mice, infused CFU-F do not contribute to CFU-F regeneration in an irradiated femur, CFU-F are not the sole determinants of stromal regeneration in femur and spleen following irradiation.  相似文献   

7.
The recovery of the B-cell population was studied in irradiated and fetal liver-reconstituted mice. Since in irradiated and reconstituted mice the B-cell population in the spleen recovers much more rapidly than in the other lymphoid organs, we assessed the role of the spleen in the recovery of the B-cell compartment in the other organs. It was found that the absence of the spleen did not delay or diminish the recovery of the immunoglobulin (Ig)-bearing (B)-cell population in the bone marrow, lymph nodes, Peyer's patches, and peripheral blood. Throughout the recovery period the number of B lymphocytes in the lymphoid organs of splenectomized mice was even greater than in the same organs of sham-operated mice. B cells obtained from the bone marrow of splenectomized, irradiated, and reconstituted mice appeared to be fully immunocompetent, as shown by their ability to cooperate with thymocytes in an adoptive plaque-forming cell response to sheep red blood cells. The compensatory effect of the increased numbers of B cells in the bone marrow and peripheral lymphoid organs of splenectomized mice was reflected in the level of the serum immunoglobulins. Apart from a lower IgM concentration in the serum of splenectomized mice, no significant differences were found in IgG1, IgG2b, and IgA levels between splenectomized and sham-splenectomized mice. It is concluded that the spleen is not essential for both normal B-lymphocyte differentiation and maturation after irradiation and reconstitution.  相似文献   

8.
本文观察了500~3000rad、局部照射后一年内骨髓中CFU-S数的变化动态,同时了解造血微环境支持造血的功能之演变过程。实验发现,500rad照射后局部骨髓中CFU-S含量明显减少,恢复不稳定,同时造血微环境支持造血的功能亦有相类似的波形起伏的损伤修复过程。1000rad局部照射的骨髓中CFU-S有更显著的降低,恢复缓慢而不稳定,造血微环境支持造血的功能早期明显受损,以后虽有修复但不能恢复到正常水平。2000rad以上的X线照射可导致局部骨髓长期再生不良,造血微环境亦见剧烈而持久的功能缺陷,这一结果表明:局部照射后,屏蔽区正常造血干细胞不能在照射部位骨髓中正常种植增殖,其原因与局部造血微环境的功能障碍密切相关。  相似文献   

9.
Autologous and allogeneic bone marrow transplantations have evolved as important cancer therapy modalities. For both indications, peripheral blood has been shown to have distinct advantages over bone marrow as the stem cell source. Cytokine combinations for mobilization have enhanced stem cell yield and accelerated engraftment. However, novel mobilizing agents and strategies are needed to further improve clinical outcomes. Within the donor graft, the dynamic equilibrium between T cells and stem cells critically influences engraftment and transplantation results. IL-17 is a cytokine produced almost exclusively from activated T cells. IL-17 was expressed in vivo with adenovirus technology. Here, proof-of-principle studies demonstrate that IL-17 effectively mobilizes hemopoietic precursor cells (CFU-granulocyte-erythrocyte-macrophage-monocyte, CFU-high proliferative potential) and primitive hemopoietic stem cells (Lin(-/low)c-kit(+)Sca1(+)). Moreover, mouse IL-17 adenovirus-mobilized peripheral blood stem cells rescued lethally irradiated mice. Bone marrow was found to be 45-75% of donor origin at 1 year. In secondary recipients, donor-derived bone marrow cells ranged from 45 to 95%. These data show that IL-17 mobilizes stem cells in mice with short- and long-term reconstituting capacity. Additional comparative studies are needed as well as studies in tumor models to refine distinct potential clinical applications for IL-17-mobilized peripheral blood stem cells.  相似文献   

10.
IL-1 is considered the primary mediator of the acute phase response. One of the characteristic manifestations of this response is early neutrophilia that is probably caused by release of mature neutrophils from the bone marrow into the peripheral blood. In the present study, we assessed whether IL-1 had a similar releasing effect on the number of circulating progenitor cells and stem cells. Female BALB/c mice were injected i.p. with increasing (0.1-1.0 micrograms/mouse) concentrations of rhu-IL-1 alpha. IL-1 injection resulted in a marked dose-dependent increase in the number of polymorphonuclear neutrophils, granulocyte-macrophage colony-forming units (CFU-GM), and cells forming spleen colonies (CFU-S day 8 and day 12). The maximal increase was found at 4 to 8 h after injection of 1 micrograms IL-1 per mouse, yielding a mean fivefold elevation in neutrophil count, and a mean 30-fold and 10-fold increase in the number of circulating CFU-GM and CFU-S, respectively. In a subsequent series of experiments, lethally irradiated (8.5 Gy) female recipient animals were transplanted with 5 x 10(5) blood mononuclear cells derived from male IL-1-treated animals. Long-term survival was obtained in 68% of mice transplanted with peripheral blood cells derived from donor animals at 6 h after a single injection of 1 micrograms IL-1. The mean number of circulating CFU-GM in these donor animals was 557/ml blood. At 6 mo after transplantation, greater than 95% of the bone marrow cells were of male origin, as determined using in situ hybridization with a Y-chromosome specific probe. In contrast, long-term survival was reached in less than 10% of mice transplanted with an equal number of blood cells derived from saline-treated controls or donor animals treated with a dose of 0.1 micrograms IL-1. These results indicate that a single injection of IL-1 induces a shift of hematopoietic progenitor cells and marrow repopulating cells into peripheral blood and that these cells can be used to rescue and permanently repopulate the bone marrow of lethally irradiated recipients.  相似文献   

11.
The functional activity of the synthetic apparatus (parameter alpha) in blood lymphocytes, bone marrow hemopoietic cells, and thymus cells, as well as the total number of blood and bone marrow cells in rats after y-irradiation at a dose of 8 Gy in the conditions of normothermia and hypothermia (16-18 degrees C) with hypoxia-hypercapnia were investigated after 2 h and on days 1 and 4. The recovery processes in blood in both groups of rats after acute X-irradiation at a dose of 7 Gy for 36 days were analyzed too. Under hypothermia, on days 1-4 after acute gamma-irradiation, a decrease in the synthetic activity in remaining cells and devastation in the hemopoietic system were pronounced to a lesser degree. After X-irradiation, the restoration of synthetic activity in blood lymphocytes was shown to begin earlier and to finish faster in "hypothermic" rats as compared with the animals irradiated in the state of normothermia. The survival of "hypothermic" rats was 100% as compared with 30% in "normothermic" animals. Thus, the data show that hypothermia exerts a radioprotective effect on the cells of the immune and hemopoietic systems, thus enhancing the resistance of the organism to radiation.  相似文献   

12.
Ammonium trichloro(dioxyethylene-O-O')tellurate (AS101) is a new synthetic compound previously described by us as having immunomodulating properties and minimal toxicity. Clinical trials are currently in progress with AS101 on AIDS and cancer patients. We found that AS101 was capable of inducing spleen cells and peritoneal exudate cells to secrete high quantities of CSF and IL-1. Because IL-1 has been previously described as a radioprotector and CSF may induce in vivo the proliferation of hemopoietic cells, we designed the present study in order to evaluate the effects of prolonged in vivo injections of AS101 on protection against lethal doses of irradiation, on the recovery pattern of precursor cells, and on the functioning of bone marrow (BM) and spleen cells of mice undergoing sublethal doses of treatment. We demonstrate that pretreatment with AS101 protects mice from lethal effects of ionizing radiation. AS101 was also found to significantly increase the number of BM and spleen cells, the absolute number of granulocyte macrophage-CFU and the secretion of CSF by BM cells. All were tested 9 days after sublethal dose of irradiation was administered. AS101 was found to have all of these radioprotective effects only when administered to mice before irradiation treatment. Moreover, the compound was found to enhance the proportion of CFU-S that enters the S phase of the cell cycle. These findings indicate that AS101 may be a promising agent to be used in reducing the time needed for reconstitution of hemopoietic cells after irradiation treatment.  相似文献   

13.
Recently it has been recognized that IL-1 plays an important role in hematopoietic regulation. Administration of 5-fluorouracil (5-FU) to mice causes prolonged neutropenia. rHIL-1 injected to mice after 5-FU, accelerated the recovery of hematopoietic progenitors and blood neutrophils. The combination of rhIL-1 and rhG-CSF reduced the neutropenic period significantly. Sublethal irradiation of mice induced profound neutropenia for 3 weeks which was associated with 80% mortality. Administration of rhIL-1 20 hours prior to or 2 hours post irradiation resulted in a significantly improved survival and rapid recovery of the neutrophil count. IL-1 administered alone or in combination with other colony stimulating factors to spontaneous breast tumor bearing mice following 5-FU therapy resulted in a rapid recovery of neutrophils, improved survival, and markedly reduced the tumor mass. Experiments in primates demonstrated that rhIL-1 administered to 5-FU treated animals shortened the neutropenic period from 30 to 17 days and increased the number of marrow progenitors responsive to other CSFs. Prolonged administration of IL-1 (14 days) to these animals resulted in a delayed neutrophil recovery as compared to animals receiving short courses of IL-1. rhIL-1 administered to primates receiving marrow grafts after lethal irradiation, did not result in rapid hematopoietic recovery. In humans, studies with CD-34 positive marrow cells showed that IL-1 had a radioprotective effect on a committed and early marrow progenitors. These data show the therapeutic potential of IL-1 in the treatment of chemoradiotherapy induced myelosuppression.  相似文献   

14.
IL-17A is a T cell-derived proinflammatory cytokine required for microbial host defense. In vivo expression profoundly stimulates granulopoiesis. At baseline, the hemopoietic system of IL-17R knockout mice (IL-17Ra(-/-)) is, with the exception of increased splenic progenitor numbers, indistinguishable from normal control mice. However, when challenged with gamma irradiation, hemopoietic toxicity is significantly more pronounced in IL-17Ra(-/-) animals, with the gamma irradiation-associated LD(50) being reduced by 150 rad. In spleen-derived T cells, gamma irradiation induces significant murine IL-17A expression in vivo but not in vitro. After sublethal radiation injury (500 rad), the infusion of purified CD4(+) T cells enhances hemopoietic recovery. This recovery is significantly impaired in IL-17Ra(-/-) animals or after in vivo blockade of IL-17Ra in normal mice, resulting in a reduction of hemopoietic precursors by 50% and of neutrophils by 43%. Following sublethal radiation-induced myelosuppression, in vivo overexpression of murine IL-17A in normal mice substantially enhanced granulopoietic restoration in mice with a 4-fold increase in neutrophils and splenic precursors on day 8 (CFU-granulocyte-macrophage/granulocyte-erythrocyte-megakaryocyte-monocyte, CFU-high proliferative potential), as well as 2- and 3-fold increases of bone marrow precursors, respectively. This establishes IL-17A as a hemopoietic response cytokine to radiation injury in mice and an inducible mechanism that is required for recovery of granulopoiesis after radiation injury.  相似文献   

15.
In an attempt to examine the in vivo proinflammatory properties of IL-1, the effects of rIL-1 beta on the development of collagen-induced arthritis in mice were investigated. The results presented in this paper demonstrated that the administration of rIL-1 beta via mini-osmotic pumps into DBA/1 mice which were suboptimally immunized with native chick type II collagen (NcII) markedly accelerated the onset as well as the progression of the arthritic disease. When IL-1-containing osmotic pumps were s.c. implanted onto mice 18 days post-collagen immunization, clinical signs of arthritis appeared within 3 to 4 days after the implant with the pumps. Maximal incidence of arthritis which was usually 80 to 100% occurred between the 6th and 7th day after the administration of rIL-1 beta. Histologic analyses revealed that the knee and ankle joints from mice which were treated with rIL-1 beta for 7 days were most severely and consistently affected. Furthermore, these IL-1-treated mice exhibited granulocytic hyperplasia within the marrow as well as marked peripheral blood neutrophilia. By contrast, arthritis was not observed during the 7-day course of the IL-1 study in the following control groups: 1) mice that were only immunized with NcII, and 2) collagen-immunized mice which received osmotic pumps containing PBS. A substantial number of these collagen-immunized mice which were not treated with IL-1 eventually developed arthritis but at later times after the incidence of arthritis had peaked in the IL-1-treated group. In addition, unimmunized mice failed to develop arthritis upon treatments with IL-1 beta. Moreover, the humoral responses to NcII were not altered in the IL-1-treated mice. Thus, these in vivo studies suggest that IL-1 is potentially capable of triggering the various inflammatory events of collagen-induced arthritis, and thereby, contribute to the pathogenesis of murine arthritis.  相似文献   

16.
Lymphopenia was induced in mice by a single injection of cyclophosphamide. IL-7 or a control protein were administered to the mice twice daily and the cellularity and composition of the spleen, lymph node, bone marrow, and thymus were determined at various time points thereafter. In comparison to the control cyclophosphamide-treated mice, animals receiving cyclophosphamide and IL-7 had an accelerated regeneration of splenic and lymph node cellularity. There was no significant difference in the rate of recovery of the bone marrow and thymus of the control and IL-7-treated mice. Assessment of the pre-B cell compartment revealed a dramatic increase in total pre-B cell numbers in the spleen and bone marrow of the IL-7-treated mice as measured by both flow microfluorimetry and a pre-B cell colony-forming assay. This was followed in a few days by a significant increase in surface IgM+B cell numbers to levels above normal values in both the spleen and lymph node. IL-7 administration to cyclophosphamide-treated mice also resulted in an accelerated recovery of peripheral CD4+ and CD8+ cell numbers in the spleen and lymph node. The numbers of CD8+ cells were increased by twofold over normal levels in cyclophosphamide-treated mice receiving IL-7. Myeloid recovery was determined in cyclophosphamide treated mice by assessing the numbers of CFU-granulocyte-macrophage and Mac 1+ cells. There was no significant difference in myeloid recovery between cyclophosphamide-treated mice receiving IL-7 or control protein. These results suggest that administration of IL-7 after chemical-induced lymphopenia may have therapeutic benefits in shortening the period required to achieve normal lymphoid cellularity.  相似文献   

17.
Deficient thymopoiesis and retarded recovery of newly developed CD4(+) T cells is one of the most important determinants of impaired immunocompetence after hemopoietic stem cell transplantation. Here we evaluated whether Fms-like tyrosine kinase 3 (Flt3) ligand (FL) alone or combined with IL-7 affects T cell recovery, thymopoiesis, and lymphoid progenitor expansion following bone marrow transplantation in immunodeficient mice. FL strongly accelerated and enhanced the recovery of peripheral T cells after transplantation of a low number of bone marrow cells. An additive effect on T cell recovery was not observed after coadministration of IL-7. Lineage(-)sca-1(+)c-kit(+)flt3(+) lymphoid progenitor cell numbers were significantly increased in bone marrow of FL-treated mice before recovery of thymopoiesis. Thymocyte differentiation was advanced to more mature stages after FL treatment. Improved T cell recovery resulted in better immunocompetence against a post-bone marrow transplantation murine CMV infection. Collectively, our data suggest that FL promotes T cell recovery by enhanced thymopoiesis and by expansion of lymphoid progenitors.  相似文献   

18.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

19.
IL-1 has putative chemo- and radioprotective properties, but its effects on primitive hemopoietic stem cell (PHSC) and early multilineage precursor function when given with these modalities is unknown. C57BL6/J (B6) mice, given IL-1 20 h before cyclophosphamide (200 mg/kg for four biweekly doses) or before irradiation (500 cGy), were sacrificed after 4 wk. Their marrow was used as donor cells, and that from B6-Hbb(dGpi1a) (B6-GPI) mice was used as competitor cells in competitive repopulation. Percentages of B6 cells were measured at 30 and 150 days. Stem cell numbers were estimated using binomial statistics. IL-1 alone did not affect stem cell function. As expected, significant declines in early multilineage precursor and PHSC function occurred with chemotherapy and radiation alone. IL-1 with chemotherapy led to exacerbation of these losses in function and numbers (p < 0.05). A similar reduction in function occurred using IL-1 before irradiation. In summary, IL-1 with chemotherapy or radiation worsened chemotherapy- and radiation-induced functional damage to PHSC and other hemopoietic precursors, suggesting that improvements in survival do not necessarily translate into preservation of hemopoietic function.  相似文献   

20.
The effects of an 8 Gy gamma total body irradiation (TBI) on exploration and locomotion activities as well as temperature were studied in C57BL6/J mice. Survival, body weight, and blood cell counts were also assessed in irradiated mice treated with placebo or interleukin (IL)-4. The efficacy of IL-4 treatment on improvement in exploration activity was evaluated. The study was carried out from 3 h to 30 days following exposure. Our results showed a biphasic response to irradiation concerning the exploration activity of mice. Irradiated mice had reduced activity as early as 3 h after exposure, with recovery of activity within 24 h. The exploration activity again decreased 4 days after irradiation and the recovery occurred slowly after day 17. IL-4 ameliorated the exploration status in mice in both phases. The locomotion activity was studied using a telemetry apparatus. A similar pattern to that of the exploration data was observed, with a minimal activity observed between days 13 and 17. A radiation-induced hypothermia was also noticed over the same time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号