首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The nucleotide (nt) sequences of inverted terminal repeats (ITR) from human adenovirus (Ad) 19, bovine Ad1 (BAd1), bovine Ad3 (BAd3), canine Ad2 (CAd2) and an avian Ad, EDS-76, were determined. The length of the ITR sequence was 160 bp in Ad19, 159 bp in BAd1, 195 bp in BAd3, 196 bp in CAd2 and 52 bp in EDS-76. CAd2 had the longest ITR among the examined Ads, BAd3 the second longest, and EDS-76 had the shortest ITR. A TAAT sequence located between the 10th and 13th nt counted from the ends was conserved in all Ads examined so far. To determine phylogenetic relationships among human and animal Ads, sequences of their ITRs were compared, and a phylogenetic tree was constructed by using the maximum-likelihood method. It is the method involving statistical analysis of computing the probability of a particular set of sequences on a given tree and maximizing this probability over all evolutionary trees [Felsenstein, J. Mol. Evol. 17 (1981) 368-376]. From these analyses, it was found that members belonging to the same human Ad subgenus are related closely to each other, whereas representatives of different human subgenera are distributed rather divergently among animal Ads.  相似文献   

2.
Cladistic analyses of chloroplast DNA disagree with current classifications by placingPolemoniaceae near sympetalous families with two staminal whorls, includingFouquieriaceae andDiapensiaceae, rather than near sympetalous families with a single staminal whorl, such asHydrophyllaceae andConvolvulaceae. To explore further the affinities ofPolemoniaceae, we sequenced 18S ribosomal DNA for eight genera ofPolemoniaceae and 31 families representing a broadly definedAsteridae. The distribution of variation in these sequences suggest some sites are hypervariable and multiple hits at these sites have obscured much of the hierarchical structure present in the data. Nevertheless, parsimony, least-squares minimum evolution, and maximum likelihood methods all support a monophyleticPolemoniaceae that is placed nearFouquieriaceae, Diapensiaceae and related ericalean families.  相似文献   

3.
A phylogeny of the species of the nase genus Chondrostoma was constructed from a complete mitochondrial cytochrome b gene (1140 bp). Molecular phylogeny was used to revise the current systematics of this group, and to infer a biogeographical model of the Mediterranean area during the Cenozoic period. We confirmed the monophyly of the genus Chondrostoma, and defined seven different lineages within it: Polylepis, Arcasii, Lemmingii, Toxostoma, Nasus, C. genei, and C. soetta. The separation of main lineages within Chondrostoma occurred in the Middle-Upper Miocene, approximately 11 million years ago, while the greatest species radiation took place in the Pliocene close to the time the current drainages system were created. It is unlikely that this genus experienced an extensive dispersal during the Messinian, in the Lago-Mare Phase. Given the level of current knowledge, a biogeographical model constructed on the basis of vicariant events seems more realistic than does a dispersalist model.  相似文献   

4.
The genus Paramecium includes species that are well known and very common in freshwater environments. Species of Paramecium are morphologically divided into two distinct groups: the "bursaria" subgroup (foot-shaped) and the "aurelia" subgroup (cigar-shaped). Their placement within the class Oligohymenophorea has been supported by the analysis of the small subunit rRNA gene sequence of P. tetraurelia. To confirm the stability of this placement and to resolve relationships within the genus, small subunit rRNA gene sequences of P. bursaria, P. calkinsi, P. duboscqui, P. jenningsi, P. nephridiatum, P. primaurelia, and P. polycaryum were determined and aligned. Trees constructed using distance-matrix, maximum-likelihood, and maximum-parsimony methods all depicted the genus as a monophyletic group, clustering with the other oligohymenophorean taxa. Within the Paramecium clade, P. bursaria branches basal to the other species, although the remaining species of the morphologically defined "bursaria" subgroup do not group with P. bursaria, nor do they form a monophyletic subgroup. However, the species of the "aurelia" subgroup are closely related and strongly supported as a monophyletic group.  相似文献   

5.
Phylogenetic relationships among 20 Australian species of the family Percichthyidae were investigated from sequence data of two portions of the mitochondrial 12S rRNA gene. The molecular data indicate that Australian genera within this family cluster into three distinct clades. The first clade is composed of some species currently ascribed to the genus Macquaria, along with Nannatherina, Nannoperca, and Bostockia, the second of Maccullochella and two catadromous Macquaria species, and the third of Gadopsis. However, the positioning of Gadopsis within this family was unresolved. Monophyly within each genus was well supported, except for Macquaria, which is clearly polyphyletic. The molecular data were used to examine two hypotheses of Australian percichthyid evolution and favor a freshwater origin for the family.  相似文献   

6.
The phylogenetic relationships of Chalara and allied taxa are studied based on ribosomal DAN sequences. Partial 28S rDNA and 18S rDNA regions from 26 strains were sequenced in this study. These and related sequences from GenBank were analyzed using parsimony and Bayesian analyses. Most of the Chalara species clustered in a strongly supported monophyletic lineage representing Helotiales. However, a few Chalara species appeared closely related to Xylariales. The phylogenetic significance of morphological characters observed in Chalara species are evaluated based on our sequence analyses. Conidial septation, conidial width and conidiophore pigmentation are thought to be indicative in understanding their evolutionary relationships. Sterile setae, which traditionally have been used to delimitate Chaetochalara from Chalara, are phylogenetically insignificant.  相似文献   

7.
The present study explores the utility of mitochondrial COI gene sequences to reveal phylogenetic and phylogeographic relationships for the entire European freshwater crayfish genus Austropotamobius. The two traditional taxa, Austropotamobius pallipes and Austropotamobius torrentium, were monophyletic, showing similar genetic diversity, with 28 and 25 haplotypes, respectively, and an uncorrected average pairwise divergence of 0.059 and 0.041. A third distinct haplotype clade, in sister relation to A. torrentium, was discovered at the Upper Kolpa drainage in the northern Dinaric area. All populations north and west of the Alps are genetically impoverished (nucleotide diversity (pi)=0.000-0.001), while southern populations are more diverse (pi=0.001-0.034). A. pallipes reaches the highest diversity in the region of Istra, probably its primary center of radiation. The genetic diversity center for A. torrentium is the southern Balkan peninsula. Other potential glacial refugia were identified in Southern France, Northwestern Italy, the Apennine Peninsula, and in the northern Dinaric area. The Iberian Peninsula has been stocked artificially from Northern Italy. Three main periods of radiation were tentatively identified: late Miocene/early Pliocene for the divergence of species and main lineages, the Pleistocene for the divergence within populations south from Alps, and a postPleistocene expansion north and west from Alps.  相似文献   

8.
South American horses constitute a direct remnant of the Iberian horses brought to the New World by the Spanish conquerors. The source of the original horses was Spain, and it is generally assumed that the animals belonged to the Andalusian, Spanish Celtic, Barb or Arabian breeds. In order to establish the relationship between Argentinean and Spanish horses, a portion of the mitochondrial D-loop of 104 animals belonging to nine South American and Spanish breeds was analysed using SSCP and DNA sequencing. The variability found both within and between breeds was very high. There were 61 polymorphic positions, representing 16% of the total sequence obtained. The mean divergence between a pair of sequences was 2.8%. Argentinean Creole horses shared two haplotypes with the Peruvian Paso from Argentina, and the commonest haplotype of the Creole horses is identical to one of the Andalusian horses. Even when there was substantial subdivision between breeds with highly significant Wright's Fixation Index (FST), the parsimony and distance-based phylogenetic analyses failed to show monophyletic groups and there was no clear relationship in the trees between the South American and any of the other horses analysed. Although this result could be interpreted as mixed ancestry of the South American breeds with respect to the Spanish breeds, it is probably indicating the retention of very ancient maternal lineages in the breeds analysed.  相似文献   

9.
Blood and tissue samples of 40 individuals including 27 parrot species (15 genera; 3 subfamilies) were collected in Indonesia. Their phylogenetic relationships were inferred from 907 bp of the mitochondrial cytochrome-b gene, using the maximum-parsimony method, the maximum-likelihood method and the neighbor-joining method with Kimura two-parameter distance. The phylogenetic analysis revealed that (1) cockatoos (subfamily Cacatuinae) form a monophyletic sister group to other parrot groups; (2) within the genus Cacatua, C. goffini and C. sanguinea form a sister group to a clade containing other congeners; (3) subfamily Psittacinae emerged as paraphyletic, consisting of three clades, with a clade of Psittaculirostris grouping with subfamily Loriinae rather than with other Psittacinae; (4) lories and lorikeets (subfamily Loriinae) emerged as monophyletic, with Charmosyna placentis a basal sister group to other Loriinae, which comprised the subclades Lorius; Trichoglossus+Eos; and Chalcopsitta+ Pseudeos.  相似文献   

10.
Some earlier studies suggested an evolutionary relationship between the Raphidophyceae (chloromonads) and Xanthophyceae (yellow-green algae), whereas other studies suggested relationships with different algal classes or the öomycete fungi. To evaluate the relationships, we determined the complete nucleotide sequences of the 18S ribosomal RNA gene from the raphidophytes Vacuolaria virescens, Chattonella subsalsa, and Heterosigma carterae, and the xanthophytes Vaucheria bursata, Botrydium stoloniferum, Botrydiopsis intercedens, and Xanthonema debile. The results showed that the Xanthophyceae were most closely related to the Phaeophyceae. A cladistic analysis of combined data sets (nucleotide sequences, ultrastructure, and pigments) suggested the Raphidophyceae are the sister taxon to the Phaeophyceae-Xanthophyceae clade, but the bootstrap value was low (40%). The raphidophyte genera were united with high (100%) bootstrap values, supporting a hypothesis based upon ultrastructural features that marine and freshwater raphidophytes form a monophyletic group. We examined the relationship between Vaucheria, a siphoneous xanthophyte alga, and the öomycetes, and we confirmed that Vaucheria is a member of the class Xanthophyceae. Partial nucleotide sequences of the 18S rRNA gene from eight xanthophytes (including Bumillariopsis filiformis, Heterococcus caespitiosus, and Mischococcus sphaerocephalus) produce a phylogeny that is not congruent with the current morphology-based classification scheme.  相似文献   

11.
The nucleotide sequences of four intergenic spacer regions of chloroplast DNA, atpB-rbcL, trnS-trnG, rps11-rpl36, and rps3-rpl16, were analyzed in the genus Glycine. Phylogenetic analysis based on the sequence data using Neonotonia wightii as the outgroup generated trees supporting the classification of two subgenera, Soja and Glycine, and three plastome groups in the subgenus Glycine. The results were consistent with the presence of diversified chloroplast genomes within tetraploid plants of G. tabacina and G. tomentella, as well as with a close relationship between G. tomentella and G. dolichocarpa that had been suggested based on morphological analyses. Little sequence variation was found in the subgenus Soja, suggesting that G. soja rapidly expanded its distribution in East Asia. The analysis also showed that the differentiation into three plastome groups in the subgenus Glycine occurred in the early stages of its evolution, after the two subgenera diverged.  相似文献   

12.
The phylogenetic relationships of the Japanese Carabinae ground beetles were analyzed by comparing 1,069 nucleotide sequences in the mitochondrial gene encoding NADH dehydrogenase subunit 5 (ND5). The ND5 phylogenetic tree revealed that the hind-wingless Carabina and the hind-wingedCalosoma/Campalita (Calosomina) diverged from the common ancestor, andCychrus (Cychrini) is the outgroup of them. Five distinct clusters (groups) can be recognized in the Carabina, i.e.,CARABUS, HEMICARABUS, LEPTOCARABUS, APOTOMOPTERUS, andPROCRUSTES/DAMASTER. The ancestors of these lineages diverged almost at the same time more than 10 Myr ago. TheCarabus cluster includes two subclusters,Carabus andOhomopterus. Two species ofCarabus examined are phylogenetically rather remote, while five species amongOhomopterus are closely related to each other. The results suggest that diversification ofCarabus started much earlier than that ofOhomopterus, presumably in the Eurasian continent, and that ofOhomopterus in the Japanese archipelago. The branching order in theLEPTOCARABUS lineage was established,Authenocarabus/Pentacarabus being their outgroup. In theDAMASTER/PROCRUSTES lineage,Procrustes is placed as the outgroup ofDamaster, with the branching order ofCoptolabrus andAcoptolabrus/Damaster. The diversification of theDamaster subspecies appeared to have occurred in the Japanese archipelago earlier thanOhomopterus, and its phylogeny reflects their geographic distribution in the archipelago rather than the morphological characters.The nucleotide sequence data reported in this paper will appear in the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases with the accession numbers D50339-D50365  相似文献   

13.
The coding region of the matK gene was sequenced to infer the phylogeny of the family Magnoliaceae. Phylogenetic analyses of 21 matK sequences representing ten genera of Magnoliaceae and three outgroups suggest relationships among both subfamilies and genera. Monophyly of the subfamily Liriodendroideae (the genus Liriodendron) and the subfamily Magnolioideae is strongly supported, respectively. Within the subfamily Magnolioideae, three clades are formed: (1) the genus Magnlietia, (2) the subgenus Magnolia, and (3) the subgenus Yulania, with the genera Michelia, Paramichelia, Tsoongiodendron, Alcimandra, Kmeria, Parakmeria and Manglietiastrum. However, the genus Magnolia is shown to be a polyphyletic group, and the genus Michelia a paraphyletic group. Relatively low sequence divergences are detected among genera of the the subfamily Magnolioideae, ranging from 0.14% to 1.70%, especially in the tribe Micheliinae (0.14–0.98%). Molecular evidence from matK sequence data suggests that the phylogenetic positions and the delimitation of the eight genera Magnolia, Michelia, Tsoongiodendron, Paramichelia, Alcimandra, Kmeria, Parakmeria and Manglietiastrum need to be reconsidered. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

14.
Species of the genus Vibrissaphora are unique among all anurans in that males exhibit external cornified spines in the maxillary region during the breeding season. They were separated from species of the genus Leptobrachium based on this unique character. We construct a phylogeny using the 16S, ND4, and cytochrome b mitochondrial genes of 42 individuals from eight species of Vibrissaphora and five species of Leptobrachium from mainland China, Southeast Asia, and Hainan Island. Species of both Oreolalax and Scutiger were used as outgroups. The results indicate that: L. huashen and L. chapaense form a clade that is nested within Vibrissaphora, and L. hainanense is the sister taxon to the clade comprising all Vibrissaphora plus L. chapaense and L. huashen; V. boringiae is grouped with a clade consisting of V. leishanensis, V. liui, and V. yaoshanensis; and V. yaoshanensis is a species separate from V. liui. We propose taxonomic changes that reflect these findings. Also based on the resulting phylogenetic trees, we propose that the mustache toads originated in the trans-Himalayan region of southwest China, and that the evolution of maxillary spines, large body size, and reverse sexual size dimorphism in these frogs was influenced by intrasexual selection due to adopting a resource-defense polygyny mating system.  相似文献   

15.
DNA sequences of the 5' end of the chloroplast ndhF gene for 15 species of Caryophyllaceae have been analyzed by parsimony and neighbor-joining analyses. Three major clades are identified, with little or no support for monophyly of traditionally recognized subfamilies. The first of the three major clades identified (Clade I) is constituted by part of the subfamily Paronychioideae. It includes members of the tribe Paronychieae and members of tribe Polycarpeae. The second (Clade II) contains members of the Paronychieae exclusively. Tribe Paronychieae is thus apparently polyphyletic and tribe Polycarpeae is at least paraphyletic. The third clade (Clade III) includes members of subfamilies Alsinoideae and Caryophylloideae along with the genus Spergularia. The genus Scleranthus is also part of Clade III, while Drymaria groups with the other genera of tribe Polycarpeae in Clade II. We conclude that morphological characters previously used to delimit subfamilial groupings in the Caryophyllaceae are apparently unreliable estimators of phylogeny.  相似文献   

16.
Intra and interspecific nucleotide sequence variation of rDNA first internal transcribed spacer (ITS1) was analysed using all eight species of the genus Thunnus plus two out‐group species within the same family, skipjack tuna Katsuwonus pelamis and striped bonito Sarda orientalis . Intraspecific nucleotide sequence variation in ITS1, including intra‐genomic variation, was low, ranging from 0·003 to 0·014 [Kimura's two parameter distance (K2P)], whereas variation between species within the genus Thunnus ranged from 0·009 to 0·05. The Atlantic and Pacific northern bluefin tunas Thunnus thynnus thynnus and Thunnus thynnus orientalis , recently proposed to be distinct species, were found to share nearly identical ITS1 sequences (mean K2P = 0·006) well within the range of intraspecific variation. The northern bluefin tuna appeared to be a sister group to albacore Thunnus alalunga , with all other Thunnus species in a distinct clade. The ITS1 phylogeny was consistent with mtDNA phylogeny in clustering the three tropical Thunnus species ( T. albacares , T. atlanticus and T. tonggol ). Southern bluefin Thunnus maccoyii and bigeye Thunnus obesus tunas showed a closer affinity to this tropical tuna group than to the northern bluefin tuna and albacore. The molecular data supported mitochondrial introgression between species and contradicted morphological subdivision of the genus into two subgenera Neothunnus and Thunnus .  相似文献   

17.
The species differentiation between Chamaecyparis formosensis, C. obtusa var. formosana, and C. obtusa, based on the composition of the leaf essential oils, was studied. The characterization of the oils by GC-FID and GC/MS analyses showed remarkable differences between these three essential oils. Cluster analysis (CA) and principal-component analysis (PCA) distinguished three groups of essential oils. The C. formosensis oil was dominated by α-pinene while those isolated from C. obtusa var. formosana and C. obtusa were characterized by high levels of (-)-thujopsene and α-terpinyl acetate, respectively. Moreover, the phylogenetic relationships of the genus Chamaecyparis were in agreement with previous findings based on morphological and molecular evidence. In addition, the essential oils from C. obtusa var. formosana could be classified into three chemical types, according to their different characteristic main compounds (β-elemol, (-)-thujopsene, and cis-thujopsenal). The biochemical correlations between the major constituents of the Chamaecyparis species were examined and their relationship is discussed.  相似文献   

18.
吴静  马雅军  马颖 《昆虫学报》2010,53(9):1030-1038
【目的】应用mtDNA和rDNA基因特征重建中国按蚊属塞蚊亚属已知种类的系统发育关系, 以阐明亚属内各蚊种的亲缘关系。【方法】对采自中国的按蚊属塞蚊亚属Anopheles (Cellia) 20种蚊的mtDNA-COⅡ和 rDNA-28S-D3序列进行测定和分析, 以按蚊属按蚊亚属Anopheles (Anopheles)的中华按蚊An. (An.) sinensis和赫坎按蚊An. (An.) hyrcanus为外群, 采用COⅡ和D3单基因, 以及“COⅡ+D3”联合数据组以邻接法(NJ)、 最大简约法(MP)、 最大似然法(ML)和贝叶斯法(BI)等重建这些种类的系统发育树。【结果】 mtDNA-COⅡ和rDNA-28S-D3序列的长度范围分别为685 bp和375~410 bp, 在塞蚊亚属蚊种间的遗传距离分别为0.015~0.117和0.003~0.111。各系统树显示外群被合理分开,除在COⅡ树中新塞蚊系为并系外,各系均聚为单系群,新迈蚊系和迈蚊系亲缘关系最近。联合数据组构建的系统合意树显示中国塞蚊亚属各蚊种形成4支,除伪威氏按蚊与多斑按蚊种团未聚为单系群外,其他各种团和复合体成员种均分别聚在一起,各分支的置信值均大于50%。【结论】本研究获得的分子系统发育树清楚地显示了中国按蚊属塞蚊亚属各种类及系之间的系统发育关系, 对其分类和防治研究具有参考价值。  相似文献   

19.
The small subunit rDNAs of five species belonging to the Euplotidae and eight species of the Oxytrichidae were sequenced to obtain a more detailed picture of the phylogenetic relationships within the Spirotrichea (Ciliophora). Various tree reconstruction algorhythms yielded nearly identical topologies. All Euplotidae were separated from the other Spirotrichea by a deep split. Further, a large genetic distance between the marine genus Moneuplotes and the freshwater species of Euplotoides was found. Differences between the methods used occurred only within the Oxytrichidae. Whereas the monophyly of the Stylonychinae was supported in all trees, the monophyly of the Oxytrichinae was not. However, the molecular data support the morphological and ontogenetic evidence that the pattern of 18 frontal-ventral-transversal cirri evolved in the stemline of the Oxytrichidae and was modified several times independently. Our results are also in agreement with taxonomic revisions: the separation of both Sterkiella nova from Oxytricha and Tetmemena pustulata from Stylonychia.  相似文献   

20.
Recent studies based on molecular data (18S rDNA and partial 28S rDNA) and morphology did not resolve a terminal polytomy within the Polyopisthocotylea. Here, we have used sequences from the full domain D2 of the 28S rDNA for 24 species (18 new sequences) with three phylogenetic methods, maximum parsimony, neighbour-joining and maximum likelihood, to infer the relationships among the Polyopisthocotylea. The analysis of the domain D2 of the 28S rDNA has been performed on two data sets. The first one, complete, included the Polystomatidae as the outgroup in order to infer general relationships, and the second one, reduced, excluded the Polystomatidae and the polyopisthocotylean parasites of chondrichthyans, but used the Mazocraeidae as the outgroup in order to resolve the relationships between the terminal groups. The topology found, sustained by high bootstrap and decay index value, is: (outgroup (Chimaericolidae (Mazocraeidae (Gastrocotylinea, other Polyopisthocotylea)))). The polyopisthocotylean parasites of chondrichthyans are the sister-group of the polyopisthocotylean parasites of teleosts. In the latter, the Mazocraeidae, essentially parasites of Clupeidae, have a basal position. The polytomy between Gastrocotylinea, Discocotylinea and Microcotylinea is partially resolved in this study for the first time: the Gastrocotylinea are the sister-group of an unresolved group including the Microcotylinea, Discocotylinea and Plectanocotylidae. Inclusion of the Plectanocotylidae in the suborder Mazocraeinea is rejected. Monophyly of the Microcotylinea and Plectanocotylidae is confirmed, but monophyly of the Discocotylinea is questioned by the exclusion of Diplozoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号