首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of the expansion of a magnetic field in a complex (e.g., dusty) plasma is considered, with a focus on the effects produced by the independent transport of charged components that does not break plasma quasineutrality. Solutions to a set of nonlinear equations are obtained for different initial and boundary conditions. In particular, it is shown that the field rapidly penetrates into the plasma when the dust is charged negatively and does not penetrate at all when the dust charge is positive.  相似文献   

2.
A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.  相似文献   

3.
A study is made of nonquasineutral vortex structures in a plasma with a magnetic field B z in which the charges separate on a spatial scale equal to the magnetic Debye radius r B=B z/4πen e. The electric field arising due to charge separation leads to radial expansion of the ions, thereby destroying the initial electron vortex. It is shown that the ion pressure gradient stops ion expansion in a nonquasineutral electron vortex and gives rise to a steady structure with a characteristic scale on the order of r B. With the electron inertia taken into account in the hydrodynamic approximation, the magnetic vortex structure in a hot plas mamanifests itself in the appearance of a “hole” in the plasma density.  相似文献   

4.
Results are presented from numerical simulations of axisymmetric plasma flows that occur in a coaxial accelerator with a longitudinal magnetic field. The simulations were carried out based on a two-dimensional MHD plasma dynamic model for the general case of a three-component magnetic field. The steady plasma flows are calculated in solving the time-dependent MHD problem by the relaxation method. The results of simulations of steady transonic flows are compared with the solutions that were obtained in the smooth accelerator channel approximation. The main regular features of plasmodynamic processes are revealed. It is found that current sheets arise in the plasma flow in a comparatively strong longitudinal magnetic field.  相似文献   

5.
Electron-ion collisions in a high-density plasma in strong electromagnetic fields are considered. The applicability condition for the approximate model of pair collisions in strong fields are determined. It is shown that this condition is identical to the condition for the plasma to be transparent. Investigations were carried out by the test particle method generalized to the case of several scattering centers. An accurate calculation of short-range collisions is provided by a “jump” method that is based on the exact solution to the problem of the motion of a particle in a Coulomb potential. This method can also be applied in other approaches to simulating a collisional plasma (such as particle-in-cell and molecular dynamics methods).  相似文献   

6.
The distributions of the electron density in a plasma produced by helicon waves and the correspond-ing wave amplitudes and phases are studied experimentally. The measurements were carried out in an argon plasma at a pressure of 3 mtorr and at an input RF power of up to 600 W. The magnetic field was caried in the range from 0 to 200 G. The efficiency of plasma production in both uniform and nonuniform fields is investigated. It is shown that, in a nonuniform magnetic field, the electron density can be substantially increased (up to 5×1012 cm?3) by placing an antenna in the region in which the magnetic field is weaker than in the main plasma.  相似文献   

7.
Dynamics of magnetotactic bacteria in a rotating magnetic field   总被引:1,自引:0,他引:1  
The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of approximately 40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field and an interesting diffusive wandering of the trajectory curvature centers. A new method to measure the magnetic moment of an individual bacterium is proposed based on the theory developed.  相似文献   

8.
A nonquasineutral vortex structure with a zero net current is described that arises as a result of electron drift in crossed magnetic and electric fields, the latter being produced by charge separation on a spatial scale of about the magnetic Debye radius r B = |B|/(4πen e ). In such a structure with a radius of rr B , the magnetic field is maintained by a drift current on the order of the electron Alfvén current J Ae = m e c 3/(2e) and can become as strong as B ? m e c 2/(er). Estimates show that, in a plasma with a density of n e = 1021?1023 cm?3 and with nonzero electron vorticity driven by high-power laser radiation on a time scale on the order of θ pe ?1 , magnetic fields with a strength of B ~ 108?109 G are generated on micron and submicron scales. The system with closed current that is considered in the present paper can also serve as a model of hot spots in the channel of a Z-pinch.  相似文献   

9.
10.
In order to specify the major determinant of the magnetic enhancement of erythrocyte sedimentation observed previously, the dependence of erythrocyte sedimentation rate (ESR) on osmolality was measured under a strong magnetic field. Even at hypotonic osmolality, an increase in ESR due to aggregation was observed in plasma solution as compared with that without aggregation in saline solution. However, the magnetic field did not enhance ESR at hypotonic osmolality, when the cell shape was an isotropic sphere (spherocyte). Thus, we narrowed our search to a mechanism that would explain the enhanced ESR found specifically in anisotropic erythrocytes. It was concluded that the major determinant can only work for anisotropic erythrocytes and is a magnetic field-induced increase in an intermembrane adhesive area due to magnetic orientation of anisotropic erythrocytes.  相似文献   

11.
Highly oriented fibres of the cylindrical bacteriophage Pf1 have been produced by drying a concentrated solution in a magnetic field of 8 Tesla. Substantial improvement in the alignment of the phage parallel to the fibre axis is demonstrated by X-ray diffraction. This effect is due to the intrinsic diamagnetic anisotropy of the viruses and to their co-operative behaviour.  相似文献   

12.
It is shown that a curved magnetic field can be used to separate ions in a multicomponent plasma. Without selective ion preheating, the separation over one cycle is inefficient: the separated ion fractions will only be enriched with ions of the corresponding isotopes. Selective ion cyclotron resonance heating makes it possible to achieve essentially a complete separation of the ions.  相似文献   

13.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field.  相似文献   

14.
15.
The motion of a metal plasma flow of a vacuum-arc discharge in a transportation plasma-optical system with a curvilinear magnetic field is studied experimentally and numerically. The flow position at the output of the system is shown to depend on the cathode material, which determines the mass-to-charge ratio of plasma ions. As a result, the flow with a greater ion mass-to-charge ratio moves along a trajectory with a larger radius. A similar effect is observed in the case of a multicomponent plasma flow generated by a composite cathode. The results of two-fluid MHD simulations of a plasma flow propagating in a curvilinear magnetic field agree qualitatively with the experimental data.  相似文献   

16.
The effect of viscosity on the evolution of an axisymmetric plasma column in a longitudinal magnetic field is considered. It is found that, under the action of viscosity, the plasma density profile tends to become Gaussian.  相似文献   

17.
An analysis is made of a flow of Ar plasma imitating plasma flows in ion separation systems such as systems for processing spent nuclear fuel or ion cyclotron resonance isotope separation systems. It is found that the electron temperature is equalized along the flow by electron heat conduction. When the electron temperature is not too low (T e E ion/10, where E ion is the ionization energy), multicharged ions are intensely produced along the entire flow. It is shown that this process is accompanied by the flow acceleration. Difficulties in describing a supersonic flow by hydrodynamic equations are pointed out.  相似文献   

18.
A study is made of the generation of strong quasistatic magnetic fields by counterpropagating moderate-intensity laser pulses of different frequencies in a low-density plasma. Strong magnetic fields are generated by small-scale large-amplitude plasma waves excited at different frequencies by ponderomotive forces in the interaction region of laser pulses. It is shown that magnetic fields are generated most efficiently under resonance conditions such that the frequency difference between laser pulses coincides with the plasma frequency. The spatial distribution of quasistatic magnetic fields is investigated, and the pattern of the contour lines of the electric current is calculated.  相似文献   

19.
Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.  相似文献   

20.
We investigated the effects of 6- and 10-T static magnetic fields (SMFs) on the expression of protooncogenes using Western blot immunohybridization methods. We used a SMF exposure system, which can expose cells to a spatially inhomogeneous 6 T with a strong magnetic field (MF) gradient (41.7 T/m) and a spatially homogeneous 10 T of the highest magnetic flux density in this experiment. HL-60 cells exposed to either 6- or 10-T SMF for periods of 1 to 48 h did not exhibit remarkable differences in levels of c-Myc and c-Fos protein expression, as compared with sham-exposed cells. In contrast, c-Jun protein expression increased in HL-60 cells after exposure to 6-T SMF for 24, 36, 48, and 72 h. These results suggest that a homogeneous 10-T SMF does not alter the expression of the c-jun, c-fos, and c-myc protooncogenes. However, our observation that exposure to a strong MF gradient induced c-Jun expression suggests that a strong MF gradient may have significant biological effects, particularly regarding processes related to an elevation of c-jun gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号