首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Werner syndrome is a premature aging disease caused by mutations in the WS gene and a deficiency in the function of Werner protein (WRN). The lack of WRN results in a cellular phenotype of genomic instability. WRN belongs to the RecQ DNA helicase family, but unlike other RecQ family members it possesses a functional exonuclease domain. We determined the crystal structure of mWRNexo (residues 31-238) bound to Zn(2+) and the sulfate ion. Compared with the structure of human WRNexo (hWRNexo), notable conformational changes were observed in several active site residues in an H5-H6 loop and in helices H6 and H7 of mWRNexo, presumably because of the presence of sulfate, which mimics the phosphate of substrate DNA. In particular, the side chains of Lys(185) and Tyr(206) were reoriented toward the Zn(2+) ion, whereas the side chain of Arg(190) pointed away from the active site center. Mutational analysis of these conserved residues abolished WRN exonuclease activity, suggesting that these residues play a critical role in the WRNexo activity. Based on substrate modeling and mutational analyses, we propose a mechanism by which WRNexo becomes activated upon substrate DNA binding. We also describe the low resolution trimeric structure of mouse WRNexoL (mWRNexoL, residues 31-330), as elucidated by small angle x-ray scattering (SAXS) analyses.  相似文献   

2.
3.
Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.  相似文献   

4.
Various mutations were introduced in a conserved helicase domain (motif VI) of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) by site-directed mutagenesis. These mutations affected the helicase activity and the ATP-dependent exonuclease activity on double-stranded DNA (dsDNA) as the substrate to various degrees, but had hardly any effect on the exonuclease activity on single-stranded DNA (ssDNA), suggesting that exonuclease activity on dsDNA of the enzyme requires unwinding of the DNA. This idea was supported by the finding that, initially, the rate and extent of unwinding of the DNA were higher than those of its degradation to acid-soluble products by the exonucleolytic activity. The effects of the mutations on DNA repair and recombination correlated strongly with their effects on helicase activity. Taken together, these results suggest that motif VI is essential for the helicase activity, and that this activity is required for DNA repair and recombination.  相似文献   

5.
Werner syndrome is a premature aging and cancer-prone hereditary disorder caused by deficiency of the WRN protein that harbors 3' -->5' exonuclease and RecQ-type 3' --> 5' helicase activities. To assess the possibility that WRN acts on partially melted DNA intermediates, we constructed a substrate containing a 21-nucleotide noncomplementary region asymmetrically positioned within a duplex DNA fragment. Purified WRN shows an extremely efficient exonuclease activity directed at both blunt ends of this substrate, whereas no activity is observed on a fully duplex substrate. High affinity binding of full-length WRN protects an area surrounding the melted region of the substrate from DNase I digestion. ATP binding stimulates but is not required for WRN binding to this region. Thus, binding of WRN to the melted region underlies the efficient exonuclease activity directed at the nearby ends. In contrast, a WRN deletion mutant containing only the functional exonuclease domain does not detectably bind or degrade this substrate. These experiments indicate a bipartite structure and function for WRN, and we propose a model by which its DNA binding, helicase, and exonuclease activities function coordinately in DNA metabolism. These studies also suggest that partially unwound or noncomplementary regions of DNA could be physiological targets for WRN.  相似文献   

6.
7.
Werner syndrome is a hereditary premature aging disorder characterized by genome instability. The product of the gene defective in WS, WRN, is a helicase/exonuclease that presumably functions in DNA metabolism. To understand the DNA structures WRN acts upon in vivo, we examined its substrate preferences for unwinding. WRN unwound a 3'-single-stranded (ss)DNA-tailed duplex substrate with streptavidin bound to the end of the 3'-ssDNA tail, suggesting that WRN does not require a free DNA end to unwind the duplex; however, WRN was completely blocked by streptavidin bound to the 3'-ssDNA tail 6 nucleotides upstream of the single-stranded/double-stranded DNA junction. WRN efficiently unwound the forked duplex with streptavidin bound just upstream of the junction, suggesting that WRN recognizes elements of the fork structure to initiate unwinding. WRN unwound two important intermediates of replication/repair, a 5'-ssDNA flap substrate and a synthetic replication fork. WRN was able to translocate on the lagging strand of the synthetic replication fork to unwind duplex ahead of the fork. For the 5'-flap structure, WRN specifically displaced the 5'-flap oligonucleotide, suggesting a role of WRN in Okazaki fragment processing. The ability of WRN to target DNA replication/repair intermediates may be relevant to its role in genome stability maintenance.  相似文献   

8.
WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences.  相似文献   

9.
Werner syndrome is a human disorder characterized by premature aging, genomic instability, and abnormal telomere metabolism. The Werner syndrome protein (WRN) is the only known member of the RecQ DNA helicase family that contains a 3' --> 5'-exonuclease. However, it is not known whether both activities coordinate in a biological pathway. Here, we describe DNA structures, forked duplexes containing telomeric repeats, that are substrates for the simultaneous action of both WRN activities. We used these substrates to study the interactions between the WRN helicase and exonuclease on a single DNA molecule. WRN helicase unwinds at the forked end of the substrate, whereas the WRN exonuclease acts at the blunt end. Progression of the WRN exonuclease is inhibited by the action of WRN helicase converting duplex DNA to single strand DNA on forks of various duplex lengths. The WRN helicase and exonuclease act in concert to remove a DNA strand from a long forked duplex that is not completely unwound by the helicase. We analyzed the simultaneous action of WRN activities on the long forked duplex in the presence of the WRN protein partners, replication protein A (RPA), and the Ku70/80 heterodimer. RPA stimulated the WRN helicase, whereas Ku stimulated the WRN exonuclease. In the presence of both RPA and Ku, the WRN helicase activity dominated the exonuclease activity.  相似文献   

10.
11.
The Werner syndrome protein, WRN, is a member of the RecQ family of DNA helicases. It possesses both 3'-->5' DNA helicase and 3'-->5' DNA exonuclease activities. Mutations in WRN are causally associated with a rare, recessive disorder, Werner syndrome (WS), distinguished by premature aging and genomic instability; all are reported to result in loss of protein expression. In addition to WS-linked mutations, single nucleotide polymorphisms, with frequencies that exceed those of WS-associated mutations, are also present in WRN. We have initiated studies to determine if six of these polymorphisms affect the enzymatic activities of WRN. We show that two common polymorphisms, F1074L and C1367R, and two infrequent polymorphisms, Q724L and S1079L, exhibit little change in activity relative to wild-type WRN; the polymorphism, T172P, shows a small but consistent reduction of activity. However, an infrequent polymorphism, R834C, located in the helicase domain dramatically reduces WRN helicase and helicase-coupled exonuclease activity. The structure of the E. coli helicase core suggests that R834 may be involved in interactions with ATP. As predicted, substitution of Arg with Cys interferes with ATP hydrolysis that is absolutely required for unwinding DNA. R834C thus represents the first missense amino acid polymorphism in WRN that nearly abolishes enzymatic activity while leaving expression largely unaffected.  相似文献   

12.
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.  相似文献   

13.
Werner syndrome patients are deficient in the Werner protein (WRN), which is a multifunctional nuclear protein possessing 3'-5' exonuclease and ATP-dependent helicase activities. Studies of Werner syndrome cells and biochemical studies of WRN suggest that WRN plays a role in several DNA metabolic pathways. WRN interacts with DNA polymerase beta (pol beta) and stimulates pol beta strand displacement synthesis on a base excision repair (BER) intermediate in a helicase-dependent manner. In this report, we examined the effect of the major human apurinic/apyrimidinic endonuclease (APE1) and of pol beta on WRN helicase activity. The results show that WRN alone is able to unwind several single strand break BER intermediates. However, APE1 inhibits WRN helicase activity on these intermediates. This inhibition is likely due to the binding of APE1 to nicked apurinic/apyrimidinic sites, suggesting that APE1 prevents the promiscuous unwinding of BER intermediates. This inhibitory effect was relieved by the presence of pol beta. A model involving the pol beta-mediated hand-off of WRN protein is proposed based on these results.  相似文献   

14.
Purified preparations of the "exonuclease" specified by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) possess an endonuclease activity. The exonuclease and endonuclease activities copurify and cosediment in a sucrose density gradient. Endonuclease activity is only observed in the presence of a divalent cation, and Mg(2+) or Mn(2+) is equally effective as a cofactor with an optimal concentration of 2 mM. A slight amount of endonuclease activity is observed in the presence of Ca(2+), whereas no activity occurs in the presence of Zn(2+). In the presence of Mg(2+), Ca(2+) and Zn(2+) are inhibitory. Comparison of exonuclease and endonuclease activity in the presence of various divalent cations revealed that, at concentrations of Mn(2+) greater than 1 mM, only endonuclease activity occurs whereas endonuclease and exonuclease activity occur at all concentrations of Mg(2+). The endonuclease was affected by putrescine and spermidine to the same extent as the exonuclease activity, but in marked contrast the endonuclease was inhibited by a 10-fold-lower concentration of spermine compared to the exonuclease. The activity specified by HSV-1 and HSV-2 has very similar properties. HSV-1 and HSV-2 endonuclease cleave covalently closed circular DNA to yield, firstly, nicked circles and then linear DNA which is subsequently hydrolyzed to small oligonucleotides. Cleavage does not appear to be base sequence specific. Conversion of nicked circles to linear DNA and subsequent degradation of linear DNA occurs more rapidly in the presence of Mg(2+) than Mn(2+) presumably by virtue of the presence of the exonuclease activity. Nonsuperhelical covalently closed circular duplex DNA is cleaved by the endonucleases at a rate 60 times slower than the rate observed on the supercoiled form. These data indicate that the HSV-1 and HSV-2 endonuclease preferentially recognize single-stranded DNA regions.  相似文献   

15.
The single-stranded DNA-binding protein replication protein A (RPA) interacts with several human RecQ DNA helicases that have important roles in maintaining genomic stability; however, the mechanism for RPA stimulation of DNA unwinding is not well understood. To map regions of Werner syndrome helicase (WRN) that interact with RPA, yeast two-hybrid studies, WRN affinity pull-down experiments and enzyme-linked immunosorbent assays with purified recombinant WRN protein fragments were performed. The results indicated that WRN has two RPA binding sites, a high affinity N-terminal site, and a lower affinity C-terminal site. Based on results from mapping studies, we sought to determine if the WRN N-terminal region harboring the high affinity RPA interaction site was important for RPA stimulation of WRN helicase activity. To accomplish this, we tested a catalytically active WRN helicase domain fragment (WRN(H-R)) that lacked the N-terminal RPA interaction site for its ability to unwind long DNA duplex substrates, which the wild-type enzyme can efficiently unwind only in the presence of RPA. WRN(H-R) helicase activity was significantly reduced on RPA-dependent partial duplex substrates compared with full-length WRN despite the presence of RPA. These results clearly demonstrate that, although WRN(H-R) had comparable helicase activity to full-length WRN on short duplex substrates, its ability to unwind RPA-dependent WRN helicase substrates was significantly impaired. Similarly, a Bloom syndrome helicase (BLM) domain fragment, BLM(642-1290), that lacked its N-terminal RPA interaction site also unwound short DNA duplex substrates similar to wild-type BLM, but was severely compromised in its ability to unwind long DNA substrates that full-length BLM helicase could unwind in the presence of RPA. These results suggest that the physical interaction between RPA and WRN or BLM helicases plays an important role in the mechanism for RPA stimulation of helicase-catalyzed DNA unwinding.  相似文献   

16.
Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN''s specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2''s basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function.  相似文献   

17.
Hyun M  Bohr VA  Ahn B 《Biochemistry》2008,47(28):7583-7593
The highly conserved RecQ helicases are essential for the maintenance of genomic stability. Werner syndrome protein, WRN, is one of five human RecQ helicase homologues, and a deficiency of the protein causes a hereditary premature aging disorder that is characterized by genomic instability. A WRN orthologue, wrn-1 lacking the exonuclease domain, has been identified in the nematode Caenorhabditis elegans. wrn-1(RNAi) in C. elegans has a shortened life span, increased sensitivity to DNA damage, and accelerated aging phenotypes. However, little is known about its enzymatic activity. We purified the recombinant C. elegans WRN-1 protein (CeWRN-1) and then investigated its substrate specificity in vitro to improve our understanding of its function in vivo. We found that CeWRN-1 is an ATP-dependent 3'-5' helicase capable of unwinding a variety of DNA structures such as forked duplexes, Holliday junctions, bubble substrates, D-loops, and flap duplexes, and 3'-tailed duplex substrates. Distinctly, CeWRN-1 is able to unwind a long forked duplex compared to human WRN. Furthermore, CeWRN-1 helicase activity on a long DNA duplex is stimulated by C. elegans replication protein A (CeRPA) that is shown to interact with CeWRN-1 by a dot blot. The ability of CeWRN-1 to unwind these DNA structures may improve the access for DNA repair and replication proteins that are important for preventing the accumulation of abnormal structures, contributing to genomic stability.  相似文献   

18.
Orren DK  Theodore S  Machwe A 《Biochemistry》2002,41(46):13483-13488
The loss of function of WRN, a DNA helicase and exonuclease, causes the premature aging disease Werner syndrome. A hallmark feature of cells lacking WRN is genomic instability typified by elevated illegitimate recombination events and accelerated loss of telomeric sequences. In this study, the activities of WRN were examined on a displacement loop (D-loop) DNA substrate that mimics an intermediate formed during the strand invasion step of many recombinational processes. Our results indicate that this model substrate is specifically bound by WRN and efficiently disrupted by its helicase activity. In addition, the 3' end of the inserted strand of this D-loop structure is readily attacked by the 3'-->5' exonuclease function of WRN. These results indicate that D-loop structures are favored sites for WRN action. Thus, WRN may participate in DNA metabolic processes that utilize these structures, such as recombination and telomere maintenance pathways.  相似文献   

19.
Werner syndrome is a hereditary premature aging disorder characterized by genomic instability. Genetic analysis and protein interaction studies indicate that the defective gene product (WRN) may play an important role in DNA replication, recombination, and repair. DNA polymerase beta (pol beta) is a central participant in both short and long-patch base excision repair (BER) pathways, which function to process most spontaneous, alkylated, and oxidative DNA damage. We report here a physical interaction between WRN and pol beta, and using purified proteins reconstitute of a portion of the long-patch BER pathway to examine a potential role for WRN in this repair response. We demonstrate that WRN stimulates pol beta strand displacement DNA synthesis and that this stimulation is dependent on the helicase activity of WRN. In addition, a truncated WRN protein, containing primarily the helicase domain, retains helicase activity and is sufficient to mediate the stimulation of pol beta. The WRN helicase also unwinds a BER substrate, providing evidence that WRN plays a role in unwinding DNA repair intermediates. Based on these findings, we propose a novel mechanism by which WRN may mediate pol beta-directed long-patch BER.  相似文献   

20.
Werner syndrome (WS) is an inherited disease characterized by premature onset of aging, increased cancer incidence, and genomic instability. The WS gene encodes a protein with helicase and exonuclease activities. Our previous studies indicated that the Werner syndrome protein (WRN) interacts with Ku, a heterodimeric factor of 70- and 80-kDa subunits implicated in the repair of double strand DNA breaks. Moreover, we demonstrated that Ku70/80 strongly stimulates and alters WRN exonuclease activity. In this report, we investigate further the association between WRN and Ku70/80. First, using various WRN deletion mutants we show that 50 amino acids at the amino terminus are required and sufficient to interact with Ku70/80. In addition, our data indicate that the region of Ku80 between amino acids 215 and 276 is necessary for binding to WRN. Then, we show that the amino-terminal region of WRN from amino acid 1 to 388, which comprise the exonuclease domain, can be efficiently stimulated by Ku to degrade DNA substrates, indicating that the helicase domain and the carboxyl-terminal tail are not required for the stimulatory process. Finally, using gel shift assays, we demonstrate that Ku recruits WRN to DNA. Taken together, these results suggest that Ku-mediated activation of WRN exonuclease activity may play an important role in a cellular pathway that requires processing of DNA ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号