首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

2.
D L Blithe  C A Buck  L Warren 《Biochemistry》1980,19(14):3386-3395
Glucosamine-labeled glycopeptides from control and virus-transformed BHK fibroblasts were characterized by size, lectin affinity, charge, and composition. As already demonstrated, on the basis of elution position on a column of Sephadex G-50, transformed cells contained a greater proportion of large glycopeptides than did control cells. Transformed cells also contained a larger proportion of glycopeptides which do not bind to Con A-Sepharose. By sequential chromatography on Sephadex G-50, Con A-Sepharose, and DEAE-Sephadex, approximately 40 individual peaks were partially or completely resolved. If sialic acid was removed from the glycopeptides prior to analysis by ion-exchange chromatography, 95% of the glycopeptides from control cells and 85% of the glycopeptides from transformed cells were no longer bound by DEAE-Sephadex. It was concluded that the DEAE-Sephadex elution properties of the glycopeptides are determined almost entirely by the sialic acid content of the molecules. A comparison of the profiles of control and transformed cell glycopeptides simultaneously eluting from columns of DEAE-Sephadex revealed that the differences between the two cells were largely quantitative; however, the possibility of the existence of qualitative differences as well cannot be excluded. In particular, there was one component present on the surface of transformed cells that was virtually absent in control cells. It was degraded by nitrous acid hydrolysis and heparinase and appeared to be heparan sulfate like material. After fractionation, each isolated glycopeptide population was analyzed for carbohydrate and, in some cases, amino acid content. The apparently larger glycopeptides, group A, the dominant population in transformed cells, were found to contain 3 to 4 mannose residues/glycopeptide when the sugars were normalized to sialic acid content. On the basis of the same criteria, group B glycopeptides contained 4-6 mannose residues/glycopeptide. The carbohydrate and amino acid compositions of the glycopeptides from transformed cells were, with a few exceptions, similar to those from control cells. Some isolated glycopeptides appeared to contain both O-glycosidic anad N-glycosidic linkages on the same oligopeptide.  相似文献   

3.
The carbohydrate content and composition of hemocyanins (Hcs) of three prosobranchs (gastropods), Rapana thomasiana, Megathura crenulata and Haliotis tuberculata, were compared. The analyses were performed by gas-liquid chromatography after methanolysis, re-N-acetylation and trimethylsilylation. The two structural subunits of R. thomasiana Hc, RtH1 and RtH2, both showed 2.6% (w/w) carbohydrate content with very similar monosaccharide composition, indicative for N-glycosylation. The two isoforms of M. crenulata Hc (KLH), KLH1 and KLH2, on the other hand, definitely differed in glycosylation: KLH2 (3.4% carbohydrate, w/w) comprised relatively less mannose and more N-acetylgalactosamine than KLH1 (3.0% carbohydrate, w/w), in agreement with the fact that O-glycosylation has been observed in a functional unit (FU) of KLH2. For the Hc of the abalone H. tuberculata, with 4.5% (w/w) carbohydrate, appreciable amounts of 3-O-methyl-d-mannose and 3-O-methyl-d-galactose were detected, showing that the occurrence of methylated sugars is not restricted to the Hcs of pulmonates. From the structural subunit RtH2 of Rapana Hc the FUs RtH2-b and RtH2-d were isolated. On the basis of amino acid sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the respective native and PNGase-F-treated glycopeptides, one N-glycosylation site was found for each FU. This site was located at Asn-405 for RtH2-b and at Asn-394 for RtH2-d; the carbohydrate moiety corresponded to GlcNAc2Man6 and GlcNAc2Man5, respectively. A comparison was made with the N-glycosylation sites of other FUs of Rapana Hc.  相似文献   

4.
M Shimamura  Y Inoue  S Inoue 《Biochemistry》1985,24(20):5470-5480
Structures of glycopeptides obtained by exhaustive Pronase digestion of high molecular weight (1.7 X 10(5)) salmon egg polysialoglycoprotein have been elucidated. Six principal glycopeptides isolated by gel chromatography and DEAE-Sephadex A-25 chromatography in the absence or presence of borate ion were analyzed for their carbohydrate and amino acid composition, as well as amino acid sequence, and found to be of two distinct types: glycotripeptides, Thr*-Ser*-Glu, and glycotetrapeptides, Thr*-Gly-Pro-Ser, where an asterisk indicates the amino acid residues to which either the Gal beta 1----3GalNAc or Fuc alpha 1----3GalNAc beta 1----3Gal beta 1----4Gal beta 1----3GalNAc chain is attached. Their final yield corresponds to 64% of the original desialylated glycoprotein. In view of the simple amino acid composition of salmon egg polysialoglycoprotein (molar ratio Asp2Thr2Ser3Glu1Pro1Gly1Ala3) and the result of alkaline beta-elimination indicating three carbohydrate units linked to two of two threonine and one of three serine residues, a unique primary structure comprising repetitive sequences of the above two types of glycopeptides, which are interspersed by short nonglycosylated peptides consisting of alanine and aspartic acid, has been proposed for the core protein. The molecular secondary ion mass spectra of underivatized glycopeptides were used to obtain their structural information. The anomeric configuration of the proximal sugar-peptide linkages was proven to be alpha by proton nuclear magnetic resonance spectroscopy. This is the first systematic reported study of O-glycosidically linked glycopeptides by these instrumental methods.  相似文献   

5.
1. The glycopeptides derived from a proteolytic digest of sialic acid-free α1-acid glycoprotein were separated on a DEAE-cellulose column into five main fractions. 2. The average molecular weight of these glycopeptides was 2400, except for one fraction whose molecular weight was 3100. The average molecular weight of the sialic acid-free carbohydrate units was found to be 2200. From these data and the carbohydrate content of the native protein and the assumed molecular weight of 44000, it was concluded that α1-acid glycoprotein probably possesses five carbohydrate units. The sialic acid-containing carbohydrate units of this glycoprotein have an average molecular weight of 3000, except for one unit the molecular weight of which is significantly higher. 3. The N-, non-N- and C-terminal amino acids of the main glycopeptides were determined. Aspartic acid and threonine occur in most peptides. Alanine, glycine, proline, serine and lysine were present in varying amounts. Traces of other amino acids were also found. 4. The amino acid sequence of three main glycopeptides was established and indicated that these glycopeptides are located at different positions of the polypeptide chain of the glycoprotein. These sequences are: Asp(NH2)-Pro-Lys; Thr-Asp(NH2)-Ala; Asp(NH2)-Gly-Thr. 5. From the results of a series of chemical reactions (periodate oxidation, hydrazinolysis, dinitrophenylation, mild acid hydrolysis) it was shown that the hydroxyl group of the N-terminal threonine and the -amino group of lysine are free and that the β-carboxyl group of aspartic acid is present as amide. It was concluded that this amide group is involved in the carbohydrate–polypeptide linkages of at least four carbohydrate units of α1-acid glycoprotein. 6. The carbohydrate composition of the sialic acid-free glycopeptides was determined in terms of moles of neutral hexoses, glucosamine and fucose/mole. 7. Fucose, at least to the larger part, is not linked to sialic acid, and its (glycosidic) linkage is significantly more stable toward acid hydrolysis than the bond of the sialyl residues. 8. Heterogeneity of the carbohydrate units of α1-acid glycoprotein was found with regard to size and to content of fucose and sialic acid.  相似文献   

6.
Clusterin is a ubiquitous, heterodimeric glycoprotein with multiple possible functions that are likely influenced by glycosylation. Identification of oligosaccharide attachment sites and structural characterization of oligosaccharides in human serum clusterin has been performed by mass spectrometry and Edman degradation. Matrix-assisted laser desorption ionization mass spectrometry revealed two molecular weight species of holoclusterin (58,505 +/- 250 and 63,507 +/- 200). Mass spectrometry also revealed molecular heterogeneity associated with both the alpha and beta subunits of clusterin, consistent with the presence of multiple glycoforms. The data indicate that clusterin contains 17-27% carbohydrate by weight, the alpha subunit contains 0-30% carbohydrate and the beta subunit contains 27-30% carbohydrate. Liquid chromatography electrospray mass spectrometry with stepped collision energy scanning was used to selectively identify and preparatively fractionate tryptic glycopeptides. Edman sequence analysis was then used to confirm the identities of the glycopeptides and to define the attachment sites within each peptide. A total of six N-linked glycosylation sites were identified, three in the alpha subunit (alpha 64N, alpha 81N, alpha 123N) and three in the beta subunit (beta 64N, beta 127N, and beta 147N). Seven different possible types of oligosaccharide structures were identified by mass including: a monosialobiantennary structure, bisialobiantennary structures without or with one fucose, trisialotriantennary structures without or with one fucose, and possibly a trisialotriantennary structure with two fucose and/or a tetrasialotriantennary structure. Site beta 64N exhibited the least glycosylation diversity, with two detected types of oligosaccharides, and site beta 147N exhibited the greatest diversity, with five or six detected types of oligosaccharides. Overall, the most abundant glycoforms detected were bisialobiantennary without fucose and the least abundant were monosialobiantennary, trisialotriantennary with two fucose and/or tetrasialotriantennary. Clusterin peptides accounting for 99% of the primary structure were identified from analysis of the isolated alpha and beta subunits, including all Ser- and Thr-containing peptides. No evidence was found for the presence of O-linked or sulfated oligosaccharides. The results provide a molecular basis for developing a better understanding of clusterin structure-function relationships and the role clusterin glycosylation plays in physiological function.  相似文献   

7.
The alpha subunit of human chorionic gonadotrophin was reduced with dithiothreitol followed by carboxymethylation with iodoacetic acid. The modified glycoprotein was hydrolysed with trypsin to give various peptides, the identities of which were established, and glycopeptides. The glycopeptides were separated by gel filtration and ion-exchange chromatography; they were subjected to component analysis and were found to represent the two carbohydrate moieties in the parent glycoprotein. Sequential removal with glycoside hydrolases of monosaccharide units from the glycopeptides demonstrated (1) that galactose, mannose, glucosamine (2-amino-2-deoxyglucose) and neuraminic acid (5-amino-3,5-dideoxy-glycero-galacto-2-nonulosonic acid) residues possess the D configurations, (2) that the glucosamine units are N-acetylated and (3) the order of the monosaccharide units in the chain, the neuraminic acid units being furthest from the peptide backbone of the subunit and substituting the D-galactose units. Methylation analysis of the glycopeptides by adaptation of the Hakomori technique demonstrated that: (4) D-galactose, D-mannose and N-acetylglucosamine (2-acetamido-2-deoxy-D-glucose) units exist in the pyranose forms; (5) the D-galactopyranose units are linked in the 1 and 6 positions; (6) the D-mannopyranose units exist in several forms, one in a terminal non-reducing position, one as 1,2-linked residues and some as 1,6-linked branch points; (7) the N-acetylglucosamine units are 1,6-linked. On the basis of the results of methylation and enzymic analysis, structures are proposed for the carbohydrate moieties and the assignments are compared with other data previously obtained by periodate-oxidation studies [Kennedy et al. (1974) Carbohydr. Res. 36, 369-377].  相似文献   

8.
1. The carbohydrate compositions of human, pig and cattle transferrins and duck ovotransferrin have been determined. 2. Glycopeptides have been prepared from these transferrins and their carbohydrate compositions and amino acid sequences determined. One of the glycopeptides from human transferrin carries the C-terminal residue of the protein. 3. Each tranferrrin yielded two glycopeptides that appeared to be identical in carbohydrate composition but different in amino acid sequence. The two glycopeptides have been distinguished as type A, in which the residue following Asn(CHO)(where CHO represents a carbohydrate moiety) is a basic amino acid and type B in which Asn(CHO) is followed by a neutral aliphatic amino acid. Cattle transferrin is exceptional in having two glycopeptides in which this position is occupied by serine. 4. It is suggested that each molecule of human and cattle transferrin and duck ovotransferrin carries an average of two carbohydrate prosthetic groups. Hen and pig transferrins appear to carry only one carbohydrate group per mol of protein. 5. The N-terminal sequences of hen and duck ovotransferrins and of cattle, human and pig transferrins were also determined.  相似文献   

9.
The purity of horseradish peroxidase isoenzyme C was demonstrated using isoelectric focusing, polyacrylamide gel electrophoresis at two pH values and cellulose acetate electrophoresis at two pH values. The glycopeptides obtained upon trypsin digestion were isolated using the plant lectin, concanavalin A, and were resolved using paper electrophoresis. The carbohydrate content of the native peroxidase was 86% accounted for by the carbohydrate content of the glycopeptides thus suggesting little loss of carbohydrate during glycopeptide isolation and purification. In each of the seven glycopeptides isolated glucosamine was associated with asparagine, thus suggesting the carbohydrate chains are covalently bound to the peptide chain through N-glycosidic linkages. The purity of each glycopeptide was demonstrated by the sequential release of single amino acid residues by Edman degradation. As six glycopeptides had unique amino acid sequences, it was concluded that the carbohydrate prosthetic group was distributed in at least six units along the protein backbone. Five glycopeptides possessed the amino acid sequence about the point of carbohydrate attachment of Asn-X-(Ser, Thr) where X is any amino acid. The size of the carbohydrate units ranged from 1600 to 3000 daltons. The predominant carbohydrate residues in each glycopeptide were mannose and glucosamine with lesser and varying amounts of fucose, xylose, and arabinose. There was no apparent correlation of the carbohydrate composition with the amino acid sequence.  相似文献   

10.
Two glycopeptides present in equal amounts were isolated from a pronase digest of alpha1-protease inhibitor of human plasma by gel filtration on Sephadex G-50 and chromatography on DEAE-cellulose. The carbohydrate side chains in both glycopeptides are linked through asparaginyl residues. The glycopeptides were digested sequentially with specific glycosidases; and after each step, the released sugars as well as the composition of the residual peptides were determined. The linear structures of these glycopeptides deduced from these data are shown below. Based on the total carbohydrate content of the intact protein and with these structural data, it is postulated that 4 oligosaccharide units are attached to 1 molecule of the protein; 2 of these were represented as in Equation 1, the other 2 as in Equation 2.  相似文献   

11.
Ricin D, a toxic protein from castor bean, was found to contain 6 moles of glucosamine and 17 moles of mannose per mole of protein.

Isolation of two constituent polypeptide chains, namely Ala-chain and Ile-chain, and subsequent proteolytic digestions with Nagarse and Pronase revealed two glycopeptides (Asp1 Thri Gly1 glucosamine2 mannose6 and Asp1 Thr1 Glu1 Pro1 glucosamine2 mannose7) from Alachain and one (Asp1 Ile1 Phe1 glucosamine2 mannose4) from lie-chain. The total carbohydrate content of these glycopeptides accounts for all that of the whole protein. It is therefore that carbohydrate moieties are covalently linked to the polypeptide chains in three sites to form this glycoprotein.  相似文献   

12.
Electrophoretic analysis of endoglycosidase-treated tissue plasminogen activator obtained from human melanoma cells showed that the heterogeneity observed for the protein in these preparations is caused by an N-glycosidically linked N-acetyllactosamine type of carbohydrate chain which is present in about 50% of the molecules. An oligomannose type and an N-acetyllactosamine type of glycan is present in all molecules. Three glycopeptides were isolated and characterized by 1H-NMR, sugar determination, methylation analysis and amino acid determination. The exact attachment site for each of the three glycans could be deduced from the amino acid compositions of the glycopeptides. Asn-117 carries the oligomannose type of glycan, the structure of which was completely determined. Asn-184 is the site where the presence or absence of a biantennary N-acetyllactosamine type of glycan causes the size heterogeneity. The third N-glycosylation site, Asn-448, was found to carry a triantennary or tetraantennary N-acetyllactosamine type of carbohydrate chain.  相似文献   

13.
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH 2 and 59°C. This extremophile is remarkable by the absence of a cell wall or an S-layer. Treating the cells with Triton X-100 at pH 3 allowed the extraction of all of the cell surface glycoproteins while keeping cells intact. The extracted glycoproteins were partially purified by cation-exchange chromatography, and we identified five glycoproteins by N-terminal sequencing and mass spectrometry of in-gel tryptic digests. These glycoproteins are positive for periodic acid-Schiff staining, have a high content of Asn including a large number in the Asn-X-Ser/Thr sequon and have apparent masses that are 34-48% larger than the masses deduced from their amino acid sequences. The pooled glycoproteins were digested with proteinase K and the purified glycopeptides were analyzed by NMR. Structural determination showed that the carbohydrate part was represented by two structures in nearly equal amounts, differing by the presence of one terminal mannose residue. The larger glycan chain consists of eight residues: six hexoses, one heptose and one sugar with an unusual residue mass of 226 Da which was identified as 6-deoxy-6-C-sulfo-D-galactose (6-C-sulfo-D-fucose). Mass spectrometry analyses of the peptides obtained by trypsin and chymotrypsin digestion confirmed the principal structures to be those determined by NMR and identified 14 glycopeptides derived from the main glycoprotein, Ta0280, all containing the Asn-X-Ser/Thr sequons. Thermoplasma acidophilum appears to have a "general" protein N-glycosylation system that targets a number of cell surface proteins.  相似文献   

14.
H Sasaki  N Ochi  A Dell  M Fukuda 《Biochemistry》1988,27(23):8618-8626
We have previously determined the carbohydrate structure of human recombinant erythropoietin [Sasaki, H., Bothner, B., Dell, A., & Fukuda, M. (1987) J. Biol. Chem. 262, 12059-12076]. The carbohydrate chains are distributed in three N-glycosylation sites and one O-glycosylation site. In order to examine the extent to which protein structure influences glycosylation, we have analyzed the saccharide structures at each glycosylation site (Asn24, Asn38, Asn83, and Ser126) of human recombinant erythropoietin. By high-performance liquid chromatography, we have succeeded in separation of glycopeptides containing different O-linked saccharides to the same peptide backbone. Fast atom bombardment mass spectrometry of the isolated glycopeptides combined with Edman degradation allowed us to elucidate the composition of glycopeptides and the amino acid attachment site. The analysis of glycopeptides and saccharides by fast atom bombardment mass spectrometry and high-performance liquid chromatography provided the following conclusions on N-glycans: (1) saccharides at Asn24 are heterogeneous and consist of biantennary, triantennary, and tetraantennary saccharides with or without N-acetyllactosaminyl repeats; (2) saccharides at Asn38 mainly consist of well-processed saccharides such as tetraantennary saccharides with or without N-acetyllactosaminyl repeats; (3) saccharides at Asn83, on the other hand, are homogeneous in the backbone structure and are composed mainly of tetraantennary without N-acetyllactosaminyl repeats. It was also noted that saccharides at Asn24 are much less sialylated than those at Asn38, although these two glycosylation sites are close to each other. These results clearly indicate that the protein structure and, possibly, the carbohydrate chain at the neighboring site greatly influence glycosylation of a given glycosylation site.  相似文献   

15.
Investigations on the oligosaccharide units of an A myeloma globulin   总被引:12,自引:6,他引:6       下载免费PDF全文
The carbohydrate content of an A myeloma globulin was investigated. The carbohydrate content was found to be unchanged when the protein was isolated from the patient over a period of 18 months. The various polymeric forms of the protein contained similar proportions of carbohydrate. The A myeloma globulin contained approx. 2 residues of 6-deoxy-l-galactose (l-fucose), 14-15 of d-mannose, 12-13 of d-galactose, 12-13 of 2-acetamido-2-deoxy-d-glucose (N-acetyl-d-glucosamine), 6 of 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) and 5 of N-acetylneuraminic acid (sialic acid), and these were distributed between six oligosaccharide units all of which were present on the heavy polypeptide chains. The oligosaccharide units showed two kinds of heterogeneity, which have been termed central and peripheral. Central heterogeneity was shown by the presence of three completely different core units, which had the following compositions: (1) 3 residues of d-galactose and 3 of 2-acetamido-2-deoxy-d-galactose, joined to protein by an O-glycosidic linkage between acetamidohexose and serine; (2) 3 residues of d-mannose, 2 of d-galactose and 3 of 2-acetamido-2-deoxy-d-glucose, joined to protein by an N-glycosidic linkage between acetamidohexose and aspartic acid; (3) 4 residues of d-mannose and 3 of 2-acetamido-2-deoxy-d-glucose with a linkage similar to that in (2). The core oligosaccharide units showed peripheral heterogeneity in the attachment of 6-deoxy-l-galactose, 2-acetamido-2-deoxy-d-glucose and N-acetylneuraminic acid. Tentative structures are proposed for these various types of oligosaccharide unit. Glycopeptides were isolated in which the sialic acid content exceeded that of d-galactose. Explanations are given for the electrophoretic mobility and staining characteristics of the various glycopeptides.  相似文献   

16.
Recombinant transforming growth factor-beta 1 (TGF-beta 1) precursor produced and secreted by a clone of Chinese hamster ovary cells was found to be glycosylated and phosphorylated. Treatment of 32P-labeled precursor protein with N-glycanase indicated that phosphate was incorporated into asparagine-linked complex carbohydrate moieties. Fractionation of 32P-labeled glycopeptides followed by amino acid sequence analysis indicated that greater than 95% of the label was incorporated into two out of three glycosylation sites at Asn-82 and Asn-136 of the TGF-beta 1 precursor. Two-dimensional electrophoretic analysis of acid hydrolyzed precursor protein and precursor protein-derived glycopeptides indicated that 32P was incorporated as mannose 6-phosphate. Binding studies with the purified receptor for mannose 6-phosphate indicated that the TGF-beta 1 precursor could bind to this receptor and the binding was specifically inhibited with mannose 6-phosphate.  相似文献   

17.
Naturally occurring glycopeptides and glycoproteins usually contain more than one glycosylation site, and the structure of the carbohydrate attached is often different from site to site. Therefore, synthetic methods for preparing peptides and proteins that are glycosylated at multiple sites, possibly with different carbohydrate structures, are needed. Here, we report a chemo-enzymatic approach for accomplishing this. Complex-type oligosaccharides were introduced to the calcitonin derivatives that contained two N-acetyl-D-glucosamine (GlcNAc) residues at different sites by treatment with Mucor hiemalis endo-beta-N-acetylglucosaminidase. Using this enzymatic transglycosylation reaction, three glycopeptides were produced, a calcitonin derivative with the same complex-type carbohydrate at two sites, and two calcitonin derivatives each with one complex-type carbohydrate and one GlcNAc. Starting from the derivatives with one complex-type carbohydrate and one GlcNAc, a high-mannose-type oligosaccharide was successfully transferred to the remaining GlcNAc using another endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Thus, we were able to obtain glycopeptides containing not only two complex-type carbohydrates, but also both complex and high-mannose-type oligosaccharides in a single molecule. Using the resultant glycosylated calcitonin derivatives, the effects of di-N-glycosylation on the structure and the activity of calcitonin were studied. The effect appeared to be predictable from the results of mono-N-glycosylated calcitonin derivatives.  相似文献   

18.
The complete amino-acid sequence of subunit a of the hemocyanin of the tarantula Eurypelma californicum was determined by manual sequencing. By limited chymotrypsinolysis, subunit a is split into two fragments of 25 kDa and 40 kDa, respectively, only one single peptide bond being attacked. The whole chain contains 15 methionine residues, after cyanogen bromide cleavage, 15 peptides were identified indicating that one residue (Met85) was not split by the cyanogen bromide reaction. For subcleavages, trypsin, chymotrypsin, Staphylococcus aureus proteinase, and Astacus fluviatilis proteinase were employed. The total chain length comprises 627 amino-acid residues, carbohydrate side chains were not found.  相似文献   

19.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

20.
B Bossy  L F Reichardt 《Biochemistry》1990,29(44):10191-10198
We have cloned and characterized a chick homologue of the human vitronectin receptor alpha subunit (alpha v) whose primary sequence is 83% identical with its human counterpart but less than 40% identical with any other known integrin alpha subunit. Comparison of the chick and human sequences reveals several highly conserved regions, including the cytoplasmic domain. The putative ligand binding domain contains alpha v-specific residues that may contribute to ligand binding specificity. These are concentrated in three regions that are located before and between the first three Ca2+ binding domains. Polyclonal antibodies raised against two peptides deduced from the putative cytoplasmic and extracellular domains of the chick alpha v sequence recognize specifically integrin heterodimers in chick embryo fibroblasts. At least three putative beta subunits coimmunoprecipitate with the chick alpha v subunit. In addition to a protein with the same molecular weight as beta 3 (94K), protein bands of Mr 84K and 110K are also coprecipitated. By successive immunodepletions, we demonstrate that this latter Mr 110K subunit is beta 1, which appears to be one of the alpha v-associated subunits in chick embryo fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号