首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Chromosome segregation of the parental chromosomes was studied in 20 interspecific hybrid clones obtained by fusion of Mus musculus embryonic stem cells with Mus caroli splenocytes. FISH analysis with labeled species specific probes and microsatellite markers was used for identification of the parental chromosomes. Cytogenetic analysis has shown significant intra- and interclonal variability in chromosome numbers and ratios of the parental chromosomes in the hybrid cells: six clones contained all M. caroli chromosomes, nine clones showed moderate segregation of M. caroli chromosomes (from 1 to 7), and five clones showed extensive loss of M. caroli chromosomes (from 12 to complete loss of all M. caroli autosomes). Both methods demonstrated cryptic segregation of the somatic partner chromosomes. For instance, five clones with near-tetraploid chromosome sets contained only few M. caroli chromosomes (from 1 to 8). The data obtained suggest that the tetraploid chromosome set per se is not a sufficient criterion for conclusion on the absence of chromosome loss in the hybrid cells. Note that cryptic chromosome segregation occurred at a high frequency in the examined hybrid clones. Thus, cryptic segregation should be borne in mind for assessing pluripotency and genome reprogramming of embryonic stem hybrid cells.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 151–158.Original Russian Text Copyright © 2005 by Pristyazhnyuk, Temirova, Menzorov, Kruglova, Matveeva, Serov.  相似文献   

2.
Unequal segregation of parental chromosomes in embryonic stem cell hybrids   总被引:4,自引:0,他引:4  
Chromosome segregation was studied in 14 intra- and 20 inter-specific hybrid clones generated by fusion of Mus musculus embryonic stem (ES) cells with fibroblasts or splenocytes of DD/c mice or Mus caroli. As a control for in vitro evolution of tetraploid karyotype we used a set of hybrid clones obtained by fusion of ES cells (D3) with ES cells (TgTP6.3). Identification of the parental chromosomes in the clones was performed by microsatellite analysis and in situ hybridization with labeled species-specific probes. Both analyses have revealed three types of clones: (i) stable tetraploid, observed only for ES x ES cell hybrids; (ii) bilateral loss of chromosomes of both ES and somatic partners; (iii) unilateral segregation of chromosomes of the somatic partner. Observed unilateral segregation was extensive in ES-splenocyte cell hybrids, but lower in ES-fibroblast hybrid clones. Developmental state of the somatic partner is presumably responsible for directional chromosome loss. Nonrandom segregation implies that initial differences in the parental homologous chromosomes were not immediately equalized implying at least transient persistence of the differentiated epigenotype.  相似文献   

3.
4.
Chromosome complements of 20 hybrid clones obtained by fusing Mus musculus embryonic stem cells (ESCs) and Mus caroli splenocytes were studied. The use of two-color fluorescence hybridization in situ with chromosome- and species-specific probes has allowed us to reliably reveal the parental origin of homologs of any chromosome in hybrid cells. Depending on the ratio of parental chromosome homologs, all 20 hybrid clones were separated in several groups ranging from the clones that contain cells that are nearly tetraploid with two diploid sets of M. musculus and single M. caroli chromosomes to clones with a marked predominance of the M. caroli chromosome. In eight hybrid cell clones, we observed the pronounced prevalence of chromosomes of the pluripotent partner over chromosomes of the somatic partner in a ratio of 5: 1 to 3: 1. In other hybrid cell clones, the ratio of M. musculus to M. caroli chromosomes was either equal (1: 1; 2: 2) or with the prevalence of the pluripotent (2: 1) or differentiated (1: 2) partner. In three hybrid cell clones, for the first time, we observed the predominant segregation of ESC-derived pluripotent chromosomes. This might indicate the compensation for the epigenetic differences between parental chromosomes of the ESC and splenocyte origin.  相似文献   

5.
In the hybrid cells obtained by fusion of embryonic stem cells with adult differentiated cells, homologous chromosomes are in two ontogenetic configurations: pluripotent and differentiated. In order to assess the role of cis- and trans-regulation in the maintenance of these states, we studied a set of clones of hybrid cells of the type embryonic stem cells-splenocytes and used two approaches: segregation of parental chromosomes and comparison of pluripotency of the past hybrid cells and embryonic stem cells. The segregation test showed that the hybrid cells lost only the homologs of the somatic partner and this process was sharply accelerated when the cells were cultivated in nonselective conditions, thus suggesting the full or partial preservation of the initial differences in the organization of parental homologs. The descendants of the former hybrid cells, which had the karyotype similar to that of embryonic stem cells, demonstrated the level of pluripotency, comparable with that of embryonic stem cells despite the long-term effect of trans-acting factors from the somatic partner in the genome of hybrid cells. The data obtained are interpreted in the framework of the concept of "chromosome memory", in the maintenance of which the key role is played by cis-regulatory factors.  相似文献   

6.
When hybrid cells are created, not only nuclear genomes of parental cells unite but their cytoplasm as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm allowing one to gain insight into the organization of hybrid cell cytoplasm. We analyzed the parental mtDNAs in hybrid cells resulting from fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of the parental mtDNAs in hybrid cells was based on polymorphism among the parental mtDNAs for certain restrictases. We found that intra- and inter-specific ES cell-splenocyte hybrid cells lost entirely or partially mtDNA derived from the somatic partner, whereas ES cell-fibroblast hybrids retained mtDNAs from both parents in similar ratios with a slight bias. The lost of the "somatic" mitochondria by Es-splenocyte hybrids implies non-random segregation of the parental mitochondria as supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from analysis of mtDNA in single cells. Preferential segregation of "somatic" mitochondria does not depend on the differences in sequences of the parental mtDNAs but depends on replicative state of the parental cells.  相似文献   

7.
In the hybrid cells obtained by fusion of embryonic stem cells with adult differentiated cells, homologous chromosomes are in two ontogenetic configurations: pluripotent and differentiated. In order to assess the role of cis- and trans-regulation in the maintenance of these states, we studied a set of clones of hybrid cells of the type embryonic stem cells–splenocytes and used two approaches: segregation of parental chromosomes and comparison of pluripotency of the past hybrid cells and embryonic stem cells. The segregation test showed that the hybrid cells lost only the homologs of the somatic partner and this process was sharply accelerated when the cells were cultivated in nonselective conditions, thus suggesting the full or partial preservation of the initial differences in the organization of parental homologs. The descendants of the former hybrid cells, which had the karyotype similar to that of embryonic stem cells, demonstrated the level of pluripotency, comparable with that of embryonic stem cells despite the long-term effect of trans-acting factors from the somatic partner in the genome of hybrid cells. The data obtained are interpreted in the framework of the concept of chromosome memory, in the maintenance of which the key role is played bycis-regulatory factors.  相似文献   

8.
9.
In hybrid cells, not only are the nuclear genomes of parent cells fused, but their cytoplasm is as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm that allows us to gain insight into the organization of hybrid-cell cytoplasm. We analyzed the parental mtDNA in hybrid cells resulting from the fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of parental mtDNA in hybrid cells was based on polymorphism among parental mtDNA for certain restriction endonucleases. We found that intra- and interspecific ES cell-splenocyte hybrid cells either entirely or partially lost mtDNA derived from a somatic partner, whereas ES cell-fibroblast hybrids retained mtDNA from both parents in similar ratios with a slight bias. The loss of somatic mitochondria by ES-splenocyte hybrids implies a nonrandom segregation of parental mitochondria, which was supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from the analysis of mtDNA in single cells. Preferential segregation of somatic mitochondria does not depend on the differences in sequences of the parental mtDNA, but rather on the replicative state of parental cells.  相似文献   

10.
Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B.  相似文献   

11.
12.
The paper deals with the FISH analysis of the regional replication of homologue of chromosomes 1, 3, and 6 in hybrid cells obtained by the fusion of Mus musculus embryonic stem cells (ESCs) and somatic cells—M. caroli splenocytes. The obtained data showed that, in hybrid cells with near-diploid karyotypes, the parental chromosomes were replicated synchronously in 70–75% of tested cells, similar to in diploid ESCs and diploid fibroblasts. In hybrid cells with near-triploid karyotypes, the asynchronous replication of the parental chromosomes increased to 46–57% of tested cells. However, this is true for hybrid cells with three copies of tested chromosomes, whereas, in triploid cells with two copies, the level of the homolog synchronous replication was close to that of diploid cells. In hybrid cells with near-tetraploid karyotypes, the level of asynchronous replication was observed in more than 50% of cells, which is comparable with the level in tetraploid ESCs and tetraploid fibroblasts. Thus, in hybrid cells with no more than two copies of an individual chromosome, the synchronous replication of homologue that initially had different levels of differentiation and parameters of replications was observed. However, the information value of the method of in situ hybridization on interphase nuclei changes significantly with an increase in the number of copies of individual chromosomes and thereby restricts possibilities of this approach for evaluation of synchronous homolog replication in hybrid cells.  相似文献   

13.
Hypoxanthine phosphoribosyltransferase–deficient (HPRT-) mouse embryonic stem (ES) cells, HM-1 cells (genotype XY), were fused with adult female DD/c mouse spleen cells. As a result, a set of HAT-resistant clones was isolated. Four hybrid clones most similar in morphology and growth characteristics to the HM-1 cells were studied in detail with respect to their pluripotency. Of these, three clones contained 41–43 chromosomes, and one clone was nearly tetraploid. All the clones had the XXY set of sex chromosomes and expressed the HPRT of the somatic partner only. The hybrid clones shared features with the HM-1 cells, indicating that they retained their pluripotent properties: (1) embryonic ECMA-7 antigen, not TROMA-1 antigen, was present in most cells; (2) the hybrid cells showed high activity of endogenous alkaline phosphatase (AP); (3) all the hybrid clones were able to form complex embryoid bodies containing derivatives of all the embryonic germinal layers; (4) the hybrid cells contained synchronously replicating X chromosomes, indicating that they were in an active state; and (5) a set of chimeric animals was generated by injecting hybrid cells into BALB/c and C57BL/6J mouse blastocysts. Evidence for chimerism was provided by the spotted coat derived from 129/Ola mice and identification of 129/Ola glucose phosphate isomerase (GPI) in many organs. Thus the results obtained demonstrated that the hybrid cells retain their high pluripotency level despite the close contact of the “pluripotent” HM-1 genome with the “somatic” spleen cell genome during hybrid cell formation and the presence of the “somatic” X chromosome during many cell generations. The presence of HPRT of the somatic partner in many organs and tissues, including the testes in chimeric animals, shows that the “somatic” X chromosome segregates weakly, if at all, during development of the chimeras. There were no individuals with the 129/Ola genotype among the more than 50 offspring from chimeric mice. The lack of the 129/Ola genotype is explained by the imbalance of the sex chromosomes in the hybrid cells rendering the passage of hybrid cell descendants through meiosis in chimeras impossible. As a result, chimeras become unable to produce gametes of the hybrid cell genotype. Mol. Reprod. Dev. 50:128–138, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
On karyotyping human—mouse hybrid cells derived from various parental crosses, we found that if the mouse parental cells were thymidine-kinase deficient, the hybrid clones retained not only the human chromosome E-17 containing the thymidinekinase gene, but a high proportion (82%) also contained the human C-7 chromosome. Other human chromosomes were also found in these clones.  相似文献   

15.
Developmental potential was assessed in 8 intra-specific and 20 inter-specific hybrid clones obtained by fusion of embryonic stem (ES) cells with either splenocytes or fetal fibroblasts. Number of chromosomes derived from ES cells in these hybrid clones was stable while contribution of somatic partner varied from single chromosomes to complete complement. This allowed us to compare pluripotency of the hybrid cells with various numbers of somatic chromosomes. Three criteria were used for the assessment: (i) expression of Oct-4 and Nanog genes; (ii) analyses of teratomas generated by subcutaneous injections of the tested cells into immunodeficient mice; (iii) contribution of the hybrid cells in chimeras generated by injection of the tested cells into C57BL blastocysts. All tested hybrid clones showed expression of Oct-4 and Nanog at level comparable to ES cells. Histological and immunofluorescent analyses demonstrated that most teratomas formed from the hybrid cells with different number of somatic chromosomes contained derivatives of three embryonic layers. Tested hybrid clones make similar contribution in various tissues of chimeras in spite of significant differences in the number of somatic chromosomes they contained. The data indicate that pluripotency is manifested as a dominant trait in the ES hybrid cells and does not depend substantially on the number of somatic chromosomes. The latter suggests that the developmental potential derived from ES cells is maintained in ES-somatic cell hybrids by cis-manner and is rather resistant to trans-acting factors emitted from the somatic one.  相似文献   

16.
Stability of the "two active X" phenotype in triploid somatic cells.   总被引:7,自引:0,他引:7  
B R Migeon  J A Sprenkle  T T Do 《Cell》1979,18(3):637-641
We examined triploid cells of XXY karyotype heterozygous for glucose 6 phosphate dehydrogenase (G6PD) electrophoretic variants with regard to the stability of their X chromosome phenotype. Clonal populations of cells derived from these human fibroblasts maintained a precise 1:2:1 ratio of A:heteropolymer:B isozymes throughout their life span, indicating stability of the two active X chromosomes in these cells. To determine the influence of the autosomal complement on X chromosome expression, we attempted to perturb the relationship. Fusion of these triploid cells with human diploid fibroblasts carrying a novel G6PD variant (B') resulted in heterokaryons exprssing a novel heteropolymer, presumably indicating that all three parental X chromosomes were active. However, no derepression of the inactive X chromosome was observed. Analysis of interspecific hybrids derived from triploid cells and mouse fibroblasts confirmed that activity of parental X chromosomes is maintained. Some human mouse hybrid clones, however, expressed only a single human G6PD isozyme, probably attributable to segregation of the pertinent X chromosome, but elimination of a relevant autosome cannot be excluded. The triploid cells transformed by SV40 showed alterations in LDH pattern and an approximately 10-20% decrease in chromosome number, but maintained the precise G6PD phenotype of the untransformed cell. These studies provide evidence for the stability of the X chromosome phenotype in triploid cells.  相似文献   

17.
The presumed random and independent process of human chromosome segregation in man-mouse somatic cell hybrids was studied. The results of chromosome analysis on 196 cells from 15 related hybrid strains have provided the first convincing evidence that segregation of human chromosomes can be nonindependent and often concordant. Different human chromosomes were not retained with equal frequency in these hybrid clones. Some were present in 80% of all the cells, whereas others appeared in less than 10% of the same cells. Linear regression analysis was used to test for correlation of the frequencies of all pair-wise combinations of human chromosomes present in these hybrid clones. Twenty-two of 136 possible correlations were statistically significant, indicating that concordant segregation of particular pairs of human chromosomes is a rather frequent occurrence.  相似文献   

18.
The Y chromosome plays a dominant role in mammalian sex determination, and characterization of this chromosome is essential to understand the mechanism responsible for testicular differentiation. Male mouse genomic DNA fragments, cloned into pBR322, were screened for the presence of Bkm (a female snake satellite DNA)-related sequences, and we obtained a clone (AC11) having a DNA fragment from the mouse Y chromosome. In addition to a Bkm-related sequence, this fragment contained a Y chromosomal repetitive sequence. DNA isolated from the XX sex-reversed male genome produced a hybridization pattern indistinguishable to that obtained with normal female DNA, suggesting that the AC11 sequence is not contained within the Y chromosomal DNA present in the sex-reversed male genome. Based on the hybridization patterns against mouse Y chromosomal DNA, AC11 classified 16 inbred laboratory strains into two categories; those with the Mus musculus musculus type Y chromosome and those with the M.m. domesticus type Y chromosome. Three European subspecies of Mus musculus (M.m. brevirostris, M.m. poschiavinus and M.m. praetextus) possessed the M.m. domesticus type Y chromosome, whereas the Japanese mouse, M.m. molossinus, had the M.m. musculus type Y chromosome. The survey was also extended to six other species that belong to the genus Mus, of which M. spretus and M. hortulamus showed significant amounts of AC11-related sequences in their Y chromosomes. The male-specific accumulation of AC11-related sequences was not found in M. caroli, M. cookii, M. pahari or M. platythrix. This marked difference among Mus species indicates that the amplification of AC11-related sequences in the mouse Y chromosome was a recent evolutionary event.  相似文献   

19.
Resistance to UV-light was studied in two UV-sensitive aneuploid Chinese hamster cell clones to different origin and degree of sensitivity, their respective polyploids and somatic cell hybrids. The karyotype of the parental clones, cell hybrids and polyploids was analyzed in parallel. A great variability of karyotypes was detected in hybrid cells. Serial cultivation of hybrids was accompanied by chromosome loss. Soon after fusion the hybrid clones proved to be more resistant to UV than the parental sensitive cells. However, their sensitivity increased with passages. The comparison of UV-sensitivity with data on karyotype analysis allowed to assume that the increase in sensitivity was correlated with the loss of particular chromosomes or chromosome regions. The results obtained indicated the existence of a polygenic control of UV-sensitivity, the multiple genes being assigned to different chromosomes. A reverse effect of ploidy was detected, i.e. a decrease in the resistance to the lethal action of UV-light in polyploids as compared to the parental clones.  相似文献   

20.
We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号