首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interacting effects of Focused Pulsed (FP) treatment and solids retention time (SRT) were evaluated in laboratory-scale digesters operated at SRTs of 2-20 days. Anaerobic digestion and methanogenesis of waste activated sludge (WAS) were stable for SRT ? 5 days, but the effluent soluble organic compounds increased significantly for SRT = 2 days due to a combination of faster hydrolysis kinetics and washout of methanogens. FP treatment increased the CH4 production rate and TCOD removal efficiency by up to 33% and 18%, respectively, at a SRT of 20 days. These effects were the result of an increase in the hydrolysis rate, since the concentrations of soluble components remained low for SRT ? 5 days. Alternately, FP pre-treatment of WAS allowed the same conversion of TCOD to CH4 with a smaller SRT and digester size: e.g., 40% size savings with a CH4 conversion of 0.23 g CH4-COD/g CODin.  相似文献   

2.
In this investigation, the effect of pH (4.0–11.0) on waste-activated sludge (WAS) hydrolysis and acidification in the presence of a biosurfactant rhamnolipid (RL) were studied. The results showed that the hydrolysis and acidification of WAS in the presence of RL at alkaline pH values were more efficient than that at acidic and near-neutral pH values. After 6 h of hydrolysis, the soluble protein and carbohydrate were 1,654.7 and 675.9 mg/L (pH 11.0), and 825.6 and 376.0 mg/L (pH 7.0), whereas the values were only 315.0 and 84.0 mg/L at pH 4.0 and 164.1 and 32.0 mg/L for the blank, respectively. After 2 or 3 days of fermentation, the accumulated short-chain fatty acids (SCFAs) reached the highest and then decreased with a further increase in time at all investigated pH values. The analysis of SCFA compositions showed that acetic, propionic, and iso-valeric acids were the three main products at any pH value. A higher pH contributed to a greater proportion of acetic acid and a lesser proportion of iso-valeric acid; a lower pH resulted in a greater proportion of iso-valeric and lesser proportion of acetic acid in the initial fermentation. The proportions of acetic acid for the system with biosurfactant RL addition were 16.65, 36.33, and 62.94 %, respectively, at pH 4.0, 7.0, and 11.0 after 1 day. Correspondingly, the proportions were 40.34, 12.60, and 11.01 % for iso-valeric acid.  相似文献   

3.
Waste activated sludge (WAS) is difficult to degrade in anaerobic digestion systems and pretreatments have been shown to speed up the hydrolysis stage. Here the effects of acid pretreatment (pH 6-1) using HCl on subsequent digestion and dewatering of WAS have been investigated. Optimisation of acid dosing was performed considering digestibility benefits and level of acid required. Pretreatment to pH 2 was concluded to be the most effective. In batch digestion this yielded the same biogas after 13 days as compared to untreated WAS at 21 days digestion. In semi-continuous digestion experiments (12 day hydraulic retention time at 35 °C) it resulted in a 14.3% increase in methane yield compared to untreated WAS, also Salmonella was eradicated in the digestate. Dewatering investigations suggested that the acid pretreated WAS required 40% less cationic polymer addition to achieve the same cake solid content. A cost analysis was also carried out.  相似文献   

4.
Chang CJ  Tyagi VK  Lo SL 《Bioresource technology》2011,102(17):7633-7640
Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600 W-85 °C-2 min), conventional heating (520 W-80 °C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5 + 18% = 26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment.  相似文献   

5.
The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.  相似文献   

6.
Volatile fatty acids (VFAs) are the most suitable and biodegradable carbon substrates for many bioprocesses. This study explored a new approach to improve the VFAs production from anaerobic co-digesting waste activated sludge (WAS) with corn straw (CS). The effect of feedstock proportion on the acidification efficiency was investigated. The maximum VFAs yield (corresponding fermentation time) was substantially increased 69% (96 h), 45% (72 h), 13% (120 h) and 12% (120 h) with 50%, 35%, 25% and 20% CS proportion of feedstock, respectively. HAc (acetic acid) was consistently the most abundant, followed by HPr (propionic acid) and n-HBu (butyric acid) in the co-digesting tests. The increase of CS in feedstock led to more production of HAc and HPr. Moreover, the consumption of protein and carbohydrate were also improved remarkably from 2955 and 249 mg COD/L (individual WAS fermentation) to 6575 and 815 mg COD/L (50%WAS:50%CS co-digestion) from 120 onward, respectively. The highest contribution of CS to additional VFAs production was1113 mg VFAs (as COD)/g CS/L in the 65%WAS:35%CS co-digesting test. Our study indicated a valuable method to improve VFAs production from anaerobic co-digesting WAS and CS.  相似文献   

7.
The objective of this work was to maximize the digestibility of biological sludge to elucidate the feasibility of a new sludge management strategy to recover good quality sludge for agricultural use. The combined effects of organic loading rates (from 0.7 to 2.8 g VS L−1 d−1) and the degree of disintegration by anaerobic digestion of sonicated activated sludge were discussed, and the thermal and energetic balances were evaluated. Despite low sonication inputs, sludge digestion performance improved in terms of solids degradation and biogas production depending on the soluble organic load. The biogas production by sonicated sludge was higher (up to 30%) with respect to the control. Filterability improved during digestion of sonicated sludge at medium OLR due to a significant abatement of the fines. Thermal balances indicated that sonication may be a proper system to guarantee self-sustaining WAS mesophilic digestion. Nevertheless, thickening is a pre-requisite to achieve a positive energy balance.  相似文献   

8.
Microwave (2450 MHz, 1250 W), ultrasonic (20 kHz, 400 W) and chemo-mechanical (MicroSludge® with 900 mg/L NaOH followed by 83,000 kPa) pretreatments were applied to pulp mill waste sludge to enhance methane production and reduce digester sludge retention time. The effects of four variables (microwave temperature in a range of 50-175 °C) and sonication time (15-90 min), sludge type (primary or secondary) and digester temperature (mesophilic and thermophilic) were investigated. Microwave pretreatment proved to be the most effective, increasing specific methane yields of WAS samples by 90% compared to controls after 21 days of mesophilic digestion. Sonication solubilized the sludge samples better, but resulted in soluble non-biodegradable compounds. Based on the laboratory scale data, MicroSludge® was found the least energy intensive pretreatment followed by sonication for 15 min alternative with net energy profits of 1366 and 386 kWh/tonne of total solids (TS), respectively. Pretreatment benefits were smaller for thermophilic digesters.  相似文献   

9.
The objective of this study is to summarize the effects of surfactants on anaerobic digestion (AD) of waste activated sludge (WAS). The increasing amount of WAS has caused serious environmental problems. Anaerobic digestion, as the main treatment for WAS containing three stages (i.e. hydrolysis, acidogenesis, and methanogenesis), has been widely investigated. Surfactant addition has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic substance, can enhance the efficiency of hydrolysis by separating large sludge and releasing the encapsulated hydrolase, providing more substance for subsequent acidogenesis. Afterwards, the short chain fatty acids (SCFAs), as the major product, have been produced. Previous investigations revealed that surfactant could affect the transformation of SCFA. They changed the types of acidification products by promoting changes in microbial activity and in the ratio of carbon to nitrogen (C/N), especially the ratio of acetic and propionic acid, which were applied for either the removal of nutrient or the production of polyhydroxyalkanoate (PHA). In addition, the activity of microorganisms can be affected by surfactant, which mainly leads to the activity changes of methanogens. Besides, the solubilization of surfactant will promote the solubility of contaminants in sludge, such as organic contaminants and heavy metals, by increasing the bioavailability or desorbing of the sludge.  相似文献   

10.
The effect of combination of mechanical and chemical pretreatment of municipal waste activated sludge (WAS) prior to anaerobic digestion was studied using a laboratory scale system with an objective to decrease volatile sulfur compounds in biogas and digested sludge. Mechanical pretreatment was conducted using depressurization of WAS through a valve from a batch pretreatment reactor pressurized at 75 ± 1 psi, while combined pretreatments were conducted using six different dosages of hydrogen peroxide (H2O2) and ferrous chloride (FeCl2) along with mechanical pretreatment. About 37-46% removal of H2S in biogas occurred for different combined pretreatment conditions. Sludge solubilization achieved due to the mechanical pretreatment increased total cumulative methane production by 8-10% after 30 days during the biochemical methane potential (BMP) test. The pretreatment also improved dewaterability in terms of time to filter (TTF), and decreased methyl mercaptan generation potential of the digested sludge.  相似文献   

11.
This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 °C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery.  相似文献   

12.
Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the γ-phosphate of ATP to propionate during l-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate > acetate ≈ butyrate), nucleotides (ATP ≈ GTP > CTP ≈ TTP; dATP > dGTP > dCTP) and metal ions (Mg2 + ≈ Mn2 + > Co2 +). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, α-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235–290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the γ-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer.  相似文献   

13.
Yuan H  Zhu N  Song F 《Bioresource technology》2011,102(3):2308-2315
The potential benefits of electrolysis-conditioned sludge dewaterability treatments with surfactants were investigated in this study. Capillary suction time (CST) and specific resistance of filtration (SRF) were used to evaluate the sludge dewaterability. Extracellular polymeric substance (EPS) content, viscosity and zeta potential were determined in an attempt to explain the observed changes in the conditioning process. The results indicated that SDS (Sodium Dodecyl Sulphate) and Triton X-100 have negative effect on the dewaterability of sludge pretreated both with and without electrolysis. However, with a combination of CTAB (Cetyl Trimethyl Ammonium Bromide) and electrolysis pretreatment presented clear advantages over surfactant conditioning alone for improving sludge dewaterability. The optimal dosage of CTAB to give maximal dewaterability was found to be 2000 mg/L, which generated sludge with optimal EPS concentration (150-300 mg/L), viscosity (55-62 mpa s) and zeta potential (−2.12 to −1.19 mV).  相似文献   

14.
A new approach to the solubilization of waste activated sludge (WAS) using an alkaline protease-producing bacterial isolate, Exiguobacterium sp. YS1, was investigated under controlled mild alkaline conditions at pH 10. Compared with the noninoculated experiment, the inoculated experiment in an anaerobic bioreactor increased soluble chemical oxygen demand concentration and alkaline protease activity by more than 40%, indicating a synergistic effect could be achieved when both bacterial inoculation and alkaline treatment were combined. Indeed, this combination led to 56.6% COD solubilization after 5 days of reaction time. However, the inoculant was not effective in the aerobic bioreactor. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA fragments revealed that the inoculated Exiguobacterium sp. YS1 became the predominant population in the bacterial community during the anaerobic solubilization processes. These results suggest that bioaugmentation of the organism might be useful for enhancing the solubilization of WAS at mild alkaline pH.  相似文献   

15.
The aim of the study was to investigate the changes in blood fructosamine concentrations of ewes during late pregnancy and lactation. The relationship of serum fructosamine to changes in the serum glucose and blood protein and albumin concentrations were measured in 10 crossbred dairy ewes. Blood was sampled 10 days prior to lambing (D − 10), on day 10 (D + 10), day 20 (D + 20), day 90 (D + 90) and on day 130 post partum (D + 130). The concentration of serum fructosamine significantly decreased on D + 10, then significantly increased on D + 20 (p < 0.05), remaining on the same level until D + 130. The concentration of serum glucose was highest on D − 10, and gradually decreased, being significantly lower on D + 130 post partum, compared to D − 10. Similarly the serum albumin and total protein concentrations were highest on D − 10, and significantly decreased on D + 10. The concentration of both parameters increased by D + 20, but then decreased on D + 90 and D + 130. The significant decrease in fructosamine concentration observed on D + 10 probably resulted from the substantial and rapid decrease in total serum protein and albumin concentrations, also established during the same period. The results confirm that in ewes, similar to other species, the shorter serum protein life span during the transition period has an influence on the decrease in blood fructosamine concentrations. These should be considered during the interpretation of serum fructosamine concentration as part of blood biochemical findings during the pre and post partum period.  相似文献   

16.
Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1 mM ammonium (NH4+) as the sole source of nitrogen. Growth of NH4+-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH4+ medium with 25 mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH4+ induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH4+ as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20 mM) or Gln (10 mM) in combination with NH4+ (1 mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin.  相似文献   

17.
Many organic anions bind free Ca2+, the total concentration of which must be adjusted in experimental solutions. Because published values for the apparent dissociation constant (Kapp) describing the Ca2+ affinity of short chain fatty acids (SCFAs) and gluconate are highly variable, Ca2+ electrodes coupled to either a 3 M KCl or a Na+ selective electrode were used to redetermine Kapp. All solutions contained 130 mM Na+, whereas the concentration of the studied anion was varied from 15 to 120 mM, replacing Cl that was decreased concomitantly to maintain osmolarity. This induces changes in the liquid junction potential (LJP) at the 3 M KCl reference electrode, leading to a systematic underestimation of Kapp if left uncorrected. Because the Na+ concentration in all solutions was constant, a Na+ electrode was used to directly measure the changes in the LJP at the 3 M KCl reference, which were under 5 mV but twice those predicted by the Henderson equation. Determination of Kapp either after correction for these LJP changes or via direct reference to a Na+ electrode showed that SCFAs do not bind Ca2+ and that the Kapp for the binding of Ca2+ to gluconate at pH 7.4, ionic strength 0.15 M, and 23 °C was 52.7 mM.  相似文献   

18.
The study investigated the effect of feeding regime and sludge age on starch utilization. For this purpose, parallel sequencing batch reactors were operated with pulse and continuous feeding of soluble starch at sludge ages of 8 and 2 days. Pulse feeding induced almost complete conversion of starch to glycogen, while storage was lowered and accompanied with direct growth under continuous feeding, regardless of sludge age. Low sludge age did not alter simultaneous storage and utilization for direct growth but it slightly favoured direct utilization due to faster growing biomass. Experimental results suggested adsorption of starch onto biomass as a preliminary removal mechanism prior to hydrolysis at sludge age of 8 days. Adsorption was not noticeable as substrate removal, glycogen generation and dissolved oxygen decrease were synchronous at sludge age of 2 days. Bacterial community always included fractions storing glycogen although sludge age only affected the relative magnitude of filamentous growth.  相似文献   

19.
The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI3) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage = 20 mg g−1MLSS, FeCI3 dosage = 14 mg g−1MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (Jss) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types.  相似文献   

20.
The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0 mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m−3 d−1. The biomass concentration was 7600 mg L−1 while the sludge volume index (SVI) was 31.3 mL g SS−1 indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号