首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our earlier communication on urea denaturation of bovine serum albumin (BSA), we showed significant unfolding of domain III along with domain I prior to intermediate formation around 4.6-5.2 M urea based on the binding results of domain specific ligands:chloroform, bilirubin and diazepam for domains I, II and III, respectively. Here, we present our results on the salt-induced refolding of the two partially folded states of BSA obtained at 4.5 M urea and at pH 3.5, respectively. Both these states were characterized by significant unfolding of both domains I and III as indicated by decreased binding of chloroform and diazepam, respectively. Salt-induced stabilization of partially folded states of BSA was accompanied by nearly complete refolding of both domains I and III as the binding isotherms of chloroform and diazepam obtained in presence of approximately 1.0 M KCl were nearly identical to that obtained with native BSA at pH 7.4. From these observations, it can be concluded that the anion binding sites on serum albumin are not only confined to domain III (C-terminal region) but few sites are also present on domain I (or N-terminal region) of the protein.  相似文献   

2.
Alkaline pH induced conformational changes in different domains of bovine serum albumin were studied by using domain specific ligands: chloroform, bilirubin and diazepam for domains I, II and III respectively. The effect of alkaline pH on the secondary structure of BSA was monitored by far-UV CD in the range 250 nm to 200 nm. The pH profiles of BSA in the alkaline region showed a two-step change, one corresponding to N<-->B transition (pH 7.5 to 9.0) and the other to B --> U (pH 11.0 to 13.5). Binding of chloroform decreased continuously on increasing pH, whereas binding of diazepam, remained unchanged up to pH 9 and decreased thereafter. In contrast, binding of bilirubin gradually increased up to pH 11.0 and decreased thereafter reaching a value similar to one obtained with native BSA at pH 11.5. Above pH 11.5, bilirubin binding decreased and was abolished completely at pH 12.5. In the pH region 7.5 to 11.0, a continuous decrease in chloroform binding (pH 7.5 to 9.5) and a late decrease in diazepam binding (pH 9.5 to 11.0) suggested major loss of native conformation of domain I followed by domain III during alkaline induced unfolding of BSA. However, a significant increase in bilirubin binding showed a favorable conformational rearrangement in domain II in this pH region (pH7.5 to 11.0). Further, a nearly complete abolishment of bilirubin binding to BSA and significant loss of secondary structure around pH 12.5 indicated that domain II was more resistant to alkaline pH and unfolds only at extreme alkalinity. Taken together, these data suggest that unfolding of three domains of BSA follow the following order of susceptibility towards alkaline denaturation of BSA domain I>domain III>domain II.  相似文献   

3.
The urea-induced unfolding of 'N' isomer (occurring at pH 7.0) and 'B' isomer (occurring at pH 9.0) of human serum albumin was studied by fluorescence and circular dichroism spectroscopic measurements. Urea-induced destabilization in different domains of both the isomers was monitored by using domain specific ligands, hemin (domain-I), chloroform, bilirubin (domain-II), and diazepam (domain-III). Urea-induced denaturation of N and B isomers of HSA showed a two-step, three-state transition with accumulation of intermediates around 4.8-5.2M and 3.0-3.4M urea concentrations, respectively. During first transition (0-4.8M urea for N isomer and 0-3.0M urea for B isomer) a continuous decrease in diazepam binding suggested major conformational changes in domain-III prior to intermediate formation. On the other hand, binding of hemin, a ligand for domain-IB and chloroform, whose binding site is located in domain-IIA remains unchanged up to 5.0M urea for N isomer and 3.0M urea for B isomer. Similarly, fluorescence intensity of Trp-214 that resides in domain-IIA remained unchanged up to the above-said urea concentrations and decreased thereafter. Absence of any decrease in hemin binding, chloroform binding, and Trp-214 fluorescence suggested the non-involvement of domain-IB and domain-IIA in intermediate formation. A significant increase in bilirubin binding prior to intermediate formation showed favorable conformational rearrangement in bilirubin binding cavity formed by loop 4 of domain-IB and loop 3 of domain-IIA. Further, a nearly complete abolishment of bilirubin binding to both isomers around 7.0M and 6.0M urea concentrations, respectively, indicated complete separation of domain-I from domain-II from each other. From these observations it can be concluded that N to B transition of human serum albumin shifted the intermediate formation towards lower urea concentration (3.0-3.4M urea for B isomer as against 4.8-5.2M urea for N isomer). Further both the intermediates were found to possess similar alpha-helical (approximately 39%) content and ligand binding properties.  相似文献   

4.
The human serum albumin is known to undergo N <==> F (neutral to fast moving) isomerization between pH 7 and 3.5. The N < ==> F isomerization involves unfolding and separation of domain III from rest of the molecule. The urea denaturation of N isomer of HSA shows two step three state transition with accumulation of an intermediate state around 4.8-5.2 M urea concentration. While urea induced unfolding transition of F isomer of HSA does not show the intermediate state observed during unfolding of N isomer. Therefore, it provides direct evidence that the formation of intermediate in the unfolding transition of HSA involves unfolding of domain III. Although urea induced unfolding of F isomer of HSA appears to be an one step process, but no coincidence between the equilibrium transitions monitored by tryptophanyl fluorescence, tyrosyl fluorescence, far-UV CD and near-UV CD spectroscopic techniques provides decisive evidence that unfolding of F isomer of HSA is not a two state process. An intermediate state that retained significant amount of secondary structure but no tertiary structure has been identified (around 4.4 M urea) in the unfolding pathway of F isomer. The emission of Trp-214 (located in domain II) and its mode of quenching by acrylamide and binding of chloroform indicate that unfolding of F isomer start from domain II (from 0.4 M urea). But at higher urea concentration (above 1.6 M) both the domain unfold simultaneously and the protein acquire random coil structure around 8.0 M urea. Further much higher KSV of NATA (17.2) than completely denatured F isomer (5.45) of HSA (8.0 M urea) suggests the existence of residual tertiary contacts within local regions in random coil conformation (probably around lone Trp-214).  相似文献   

5.
The urea and heat-induced unfolding-refolding behaviours of chicken egg white ovomucoid and its four fragments representing domains I, II + III, I + II and III were systematically investigated in 0.06 M sodium phosphate buffer (pH 7.0) by difference spectral measurements. The effect of temperature on ovomucoid and its fragments was also studied in 0.05 M sodium acetate buffer (pH 5.0) and in presence of 2 M urea at pH 7.0. Intrinsic viscosity data showed that ovomucoid and its different fragments did not lose any significant amount of their structure under mild acidic conditions (pH 4.6). Difference spectral results showed extensive disruption of the native structure by urea or temperature. Isothermal transitions showed single-step for domain I, domain I + II and domain III, and two-step having one stable intermediate, for ovomucoid and its fragment representing domain II + III. However, the presence of intermediate was not detected when the transitions were studied with temperature at pH 7.0. Strikingly, the single-step thermal transitions of ovomucoid and its fragment representing domain II + III, became two-step when measured either at pH 5.0 or in presence of 2 M urea at pH 7.0. Analysis of the equilibrium data on urea and heat denaturation showed that the second transition observed with ovomucoid or domain II + III represent the unfolding of domain III. The kinetic results of ovomucoid and its fragments indicate that the protein unfolds with three kinetic phases. A comparison of three rate constants for the unfolding of intact ovomucoid with that of its various fragments revealed that domain I, II and III of the protein correspond to the three kinetic phases having rate constants 0.456, 0.120 and 0.054 min-1, respectively. These data have led us to conclude: (i) the unusual stability of ovomucoid towards various denaturants, including temperature, is due to its domain III, (ii) initiation of the folding of the ovomucoid molecule starts from its NH2-terminal region which probably provides the nucleation site for the formation of the subsequent structure and (iii) domains I and II have greater mutual recognition between them as compared to the recognition either of them have with domain III.  相似文献   

6.
Muzammil S  Kumar Y  Tayyab S 《Proteins》2000,40(1):29-38
The unfolding of human serum albumin (HSA), a multidomain protein, by urea was followed by far-UV circular dichroism (CD), intrinsic fluorescence, and ANS fluorescence measurements. The urea-induced transition, which otherwise was a two-step process with a stable intermediate at around 4.8 M urea concentration as monitored by far-UV CD and intrinsic fluorescence, underwent a single-step cooperative transition in the presence of 1.0 M KCl. The free energy of stabilization (DeltaDelta G(H2O)D) in the presence of 1 M KCl was found to be 1,090 and 1,200 cal/mol as determined by CD and fluorescence, respectively.The salt stabilization occurred in the first transition (0-5.0 M urea), which corresponded to the formation of intermediate (I) state from the native (N) state, whereas the second transition, corresponding to the unfolding of I state to denatured (D) state, remained unaffected. Urea denaturation of HSA as monitored by tryptophan fluorescence of the lone tryptophan residue (Trp(214)) residing in domain II of the protein, followed a single-step transition suggesting that domain(s) I and/or III is (are) involved in the intermediate formation. This was also confirmed by the acrylamide quenching of tryptophan fluorescence at 5 M urea, which exhibited little change in the value of Stern-Volmer constant. ANS fluorescence data also showed single-step transition reflecting the absence of accumulation of hydrophobic patches. The stabilizing potential of various salts studied by far-UV CD and intrinsic fluorescence was found to follow the order: NaClO(4) > NaSCN >Na(2)SO(4) >KBr >KCl >KF. A comparison of the effects of various potassium salts revealed that anions were chiefly responsible in stabilizing HSA. The above series was found similar to the electroselectivity series of anions towards the anion-exchange resins and reverse of the Hofmeister series, suggesting that preferential binding of anions to HSA rather than hydration, was primarily responsible for stabilization. Further, single-step transition observed with GdnHCl can be ascribed to its ionic character as the free energy change associated with urea denaturation in the presence of 1.0 M KCl (5,980 cal/mol) was similar to that obtained with GdnHCl (5,870 cal/mol).  相似文献   

7.
Urea-induced unfolding of lipoxygenase-1 (LOX1) at pH 7.0 was followed by enzyme activity, spectroscopic measurements, and limited proteolysis experiments. Complete unfolding of LOX1 in 9 M urea in the presence of thiol reducing or thiol modifying reagents was observed. The aggregation and oxidative reactions prevented the reversible unfolding of the molecule. The loss of enzyme activity was much earlier than the structural loss of the molecule during the course of unfolding, with the midpoint concentrations being 4.5 and 7.0 M for activity and spectroscopic measurements, respectively. The equilibrium unfolding transition could be adequately fitted to a three-state, two-step model (N left arrow over right arrow I left arrow over right arrow U) and the intermediate fraction was maximally populated at 6.3 M urea. The free energy change (DeltaG(H(2)O)) for the unfolding of native (N) to intermediate (I) was 14.2 +/- 0.28 kcal/mol and for the intermediate to the unfolded state (U) was 11.9 +/- 0.12 kcal/mol. The ANS binding measurements as a function of urea concentration indicated that the maximum binding of ANS was in 6.3 M urea due to the exposure of hydrophobic groups; this intermediate showed significant amount of tertiary structure and retained nearly 60% of secondary structure. The limited proteolysis measurements showed that the initiation of unfolding was from the C-terminal domain. Thus, the stable intermediate observed could be the C-terminal domain unfolded with exposed hydrophobic domain-domain interface. Limited proteolysis experiments during refolding process suggested that the intermediate refolded prior to completely unfolded LOX1. These results confirmed the role of cysteine residues and domain-domain interactions in the reversible unfolding of LOX1. This is the first report of the reversible unfolding of a very large monomeric, multi-domain protein, which also has a prosthetic group.  相似文献   

8.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

9.
In an attempt to systematically dissect the ligand binding properties of human serum albumin (HSA), the gene segments encoding each of its three domains were defined based on their conserved homologous structural motifs and separately cloned into a secretion vector for Pichia pastoris. We were able to establish a generally applicable purification protocol based on Cibacron Blue affinity chromatography, suggesting that each of the three domains carries a binding site specific for this ligand. Proteins were characterized by SDS-polyacrylamide gel electrophoresis, isoelectric focusing, gel filtration, N-terminal sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, as well as near- and far-UV CD. In addition to the affinity chromatography ligand Cibacron Blue, binding properties toward hemin, warfarin, and diazepam, each of which represents a standard ligand for HSA, respectively, were investigated by the measurement of induced circular dichroism. Clear experimental evidence is provided here for the location of the primary hemin binding site to be on domain I of HSA, and for the primary diazepam binding site to be on domain III. Further, secondary binding sites were found for hemin to be located on domains II and III, and for diazepam on domain I. The warfarin binding site was located primarily on domain II, while on domain I, a secondary binding site and/or parts of the primary binding site were found.  相似文献   

10.
Urea-induced unfolding of bovine serum albumin and one of its fragments containing domain II + III has been studied by difference spectral and fluorescence emission measurements. The unfolding-refolding curves of both the proteins showed the presence of at least one stable intermediate when the transition was monitored at 288 nm. The presence of the intermediate was not detectable at 293 nm where only tryptophan contributed towards the protein absorption. However, both the proteins did show the presence of intermediate when the denaturation was monitored fluorometrically. Since domain III of the albumin is devoid of tryptophan, it is concluded that the formation of intermediate in the unfolding-refolding transition of serum albumin involves (i) unfolding of domain III, (ii) minor structural transformations in domain II, and/or (iii) the separation of the sub-domains of domain III from each other.  相似文献   

11.
We investigated the role of the constituent domains of the CryIA(b) and CryIA(c) delta-endotoxins in binding to midgut epithelial cell membrane proteins of Spodoptera exigua and Manduca sexta on ligand blots. A collection of wild-type and CryIC-CryIA hybrid toxins was used for this purpose. As demonstrated elsewhere (R. A. de Maagd, M. S. G. Kwa, H. van der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema, and D. Bosch, Appl. Environ. Microbiol. 62:1537-1543, 1996), CryIA(b) domain III recognized a 205-kDa protein on S. exigua blots, while no specific binding by domain I or II could be detected. In contrast, on ligand blots of M. sexta proteins CryIA(b) domain II recognized a 210-kDa protein and CryIA(b) domain III recognized a 250-kDa protein. Domain III is responsible for the interaction of CryIA(c) with 120-kDa major binding proteins of both S. exigua and M. sexta. In addition, in M. sexta CryIA(c) also reacts with a 210-kDa binding protein through its domain I and/or domain II. These results show that besides domain II, domain III of delta-endotoxins plays a major role in binding to putative receptors on ligand blots. However, for S. exigua there was no clear correlation between binding of toxins on ligand blots and the in vivo toxicity of the toxins. These and previous results suggest that interactions of insect membrane proteins with both domain II and domain III can occur and that detection of these interactions depends on the type of binding assay used.  相似文献   

12.
The stability of association of nitroimidazole radiosensitizers (metronidazole and misonidazole) with bovine serum albumin (BSA) was examined in aqueous solutions by 1H n.m.r. spectroscopy in the presence of urea (0-8M) as denaturant, or high salt concentration (NaCl0-5M). A broadening of n.m.r. lines of the two radiosensitizers observed in the presence of BSA disappeared with increasing urea concentration. An especially large narrowing effect was observed for the lines attributed to the methylene group near to the hydroxyl in the side chain of misonidazole. The results suggest a release of both radiosensitizers from their binding sites on unfolding by urea of the polypeptide chain of BSA. The increase of ionic strength I caused a monotonic enhancement of broadening by BSA of the metronidazole lines. For misonidazole, the enhancement of broadening was observed at values of I greater than 1, but at low (less than 1 M) concentrations of NaCl the broadening disappeared. Thus, the results obtained in the systems with salt reflect quantitative changes in hydrophobic and hydrogen-bonded contributions to binding of aliphatic moieties of radiosensitizers to BSA.  相似文献   

13.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

14.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

15.
The purpose of our study was to determine the effects of specific truncations on the structural properties of human betaA3-crystallin. The following eight deletion mutants of betaA3-crystallin were generated: (i) N-terminal extension (NTE) 21 amino acids (betaA3[21] mutant), (ii) NTE 22 amino acids (betaA3[22] mutant), (iii) NTE (betaA3[N] mutant), (iv) NTE plus motif I (betaA3[N+I] mutant), (v) NTE plus motifs I and II (betaA3[N+I+II] mutant), (vi) NTE plus motifs I and II and connecting peptide (betaA3[N+I+II+CP] mutant), (vii) motifs III and IV (betaA3[III+IV] mutant), and (viii) motif IV (betaA3 [IV] mutant). The DNA sequencing and MALDI-TOF mass spectrometric methods confirmed desired specific deletions, and the purified mutant proteins exhibited a single band during SDS-PAGE analysis. When ANS bound, all the mutant proteins exhibited fluorescence quenching and a red shift, suggesting that the truncations caused changes in the exposed hydrophobic patches. The CD spectra showed that deletion of either NTE or the N-terminal domain (motifs I and II) had a relatively weaker effect on the structural stability than deletion of the C-terminal domain (motifs III and IV). Intrinsic Trp fluorescence spectral studies suggested changes in the microenvironment of the mutant proteins following truncations. HPLC multiangle light scattering analyses showed that truncation led to higher-order aggregation compared to that in the wild-type protein. Equilibrium unfolding and refolding of WT betaA3 with urea were best fit to a three-state model with transition midpoints at 2.2 and 3.1 M urea. However, the two transition midpoints of betaA3[21] and betaA3[22] and betaA3[N] mutants were similar to those of the wild type, suggesting that these truncations had a minimal effect on structural stabilization. Further, the mutant proteins containing the N-terminal domain (i.e., betaA3[III+IV] and betaA3[IV] mutants) exhibited higher transition midpoints compared to the transition midpoints of the mutant protein with the C-terminal domain (i.e., betaA3[N+I+II+CP] mutant). The results suggested that the N-terminal domain is relatively more stable than the C-terminal domain in betaA3-crystallin.  相似文献   

16.
Structural changes in T7 RNA polymerase (T7RNAP) induced by temperature and urea have been studied over a wide range of conditions to obtain information about the structural organization and the stability of the enzyme. T7RNAP is a large monomeric enzyme (99 kD). Calorimetric studies of the thermal transitions in T7RNAP show that the enzyme consists of three cooperative units that may be regarded as structural domains. Interactions between these structural domains and their stability strongly depend on solvent conditions. The unfolding of T7RNAP under different solvent conditions induces a highly stable intermediate state that lacks specific tertiary interactions, contains a significant amount of residual secondary structure, and undergoes further cooperative unfolding at high urea concentrations. Circular dichroism (CD) studies show that thermal unfolding leads to an intermediate state that has increased beta-sheet and reduced alpha-helix content relative to the native state. Urea-induced unfolding at 25 degrees C reveals a two-step process. The first transition centered near 3 M urea leads to a plateau from 3.5 to 5.0 M urea, followed by a second transition centered near 6.5 M urea. The CD spectrum of the enzyme in the plateau region, which is similar to that of the enzyme thermally unfolded in the absence of urea, shows little temperature dependence from 15 degrees to 60 degrees C. The second transition leads to a mixture of poly(Pro)II and unordered conformations. As the temperature increases, the ellipticity at 222 nm becomes more negative because of conversion of poly(Pro)II to the unordered conformation. Near-ultraviolet CD spectra at 25 degrees C at varying concentrations of urea are consistent with this picture. Both thermal and urea denaturation are irreversible, presumably because of processes that follow unfolding.  相似文献   

17.
Krishnakumar SS  Panda D 《Biochemistry》2002,41(23):7443-7452
Prodan (6-propionyl-2-(dimethylamino)-naphthalene), a competitive inhibitor of warfarin binding to human serum albumin (HSA) at drug site I, was used to determine the inter- and intradomain distances of HSA. The fluorescence resonance energy transfer (FRET) distances between prodan and Trp-214, prodan and 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CM)-modified Cys-34, and Trp-214 and CM-Cys-34 were determined to be 25.5 +/- 0.5 A, 33.1 +/- 0.8 A, and 32.4 +/- 1 A, respectively. FRET analysis showed that low concentration of palmitic acid (5 microM) increased the interdomain distance between the Trp-214 in domain II and CM-Cys-34 in domain I by approximately 5 A without perturbing the secondary structure of HSA and the immediate environment of Trp-214. Palmitic acid (5 microM) increased the prodan fluorescence by increasing the quantum yield of bound prodan without altering the tryptophan environment. However, palmitic acid (>10 microM) decreased the prodan fluorescence and increased the tryptophan fluorescence. Our results indicate that the high affinity palmitic acid binding site is located at the interface of domains I and II. On the basis of our measurements, a schematic model representing the drug site-1, Trp-214, and Cys-34 along with the palmitic acid sites has been constructed. In addition, prodan fluorescence, FRET, and ligand binding were used to monitor guanidine hydrochloride-induced denaturation of HSA. An analysis of the equilibrium unfolding data suggests that HSA undergoes a two-state unfolding transition with no detectable intermediate. However, kinetic analysis using multiple probes and thermal denaturation studies showed that the unfolding of the prodan site in HSA preceded the unfolding of tryptophan environment. In addition, the separation of domain I and II occurred before the global unfolding of the protein. The data support the idea that HSA loses its structure incrementally during its unfolding.  相似文献   

18.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

19.
We induced the denaturation of unlabeled human serum albumin (HSA) and of similar albumin labeled with acrylodan (6-acryloyl-2-dimethylamino naphthalene) with urea and studied the transition profiles using circular dichroism and fluorescence spectroscopy. The circular dichroism spectra for both albumin preparations resulted in the same curves, thus indicating that labeling with acrylodan does not perturb the conformation of HSA. Our results indicate that the denaturation of both albumin preparations takes place at a single, two-state transition with midpoint at about 6 M urea, due to the unfolding of its domain II. It is important to point out that even at 8 M urea, some residual structure remains in the HSA. Great changes in the fluorescence of the dye bound to the protein were observed by addition of solid guanidine hydrochloride to the protein labeled with acrylodan dissolved in 8 M urea, indicating that domain I of this protein was not denatured by urea.  相似文献   

20.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号