首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excised florets of some hardy Rhododendron species did not toleratefreezing at –5°C when ice-inoculated due to intracellularfreezing. Florets in intact December buds, however, could besupercooled to about –30°C. When flower buds of R.japonicum were slowly cooled with daily decrements of 5°Cto temperatures ranging from 0 to –20°C, the exothermtemperatures of the florets drastically decreased. This wasaccompanied by a decrease in water content of florets and peduncleand an increase in that of scales. The water in florets andthe peduncle is thought to migrate to scales and other tissuesduring the early stages of freezing; the dehydrated floret hasa lower freezing point which enhances its supercooling abilityand the dehydrated peduncle helps to maintain the supercooledstate of the florets. This hypothesis would explain the dependenceon the cooling rate of supercooling in Rhododendron flower buds.Water migration within flower buds was observed in other hardyRhododendron species with some variation in ice formation siteand the quantity of migrated water. The exotherm temperatureof excised florets was inversely proportional to their watercontent. Dehydration of flower buds by wind at 0°C alsoenhanced their supercooling ability. Mechanisms of freezingavoidance by supercooling in Rhododendron flower buds and therelationship of supercooling to freezing tolerance are discussed. 1 Contribution No. 2254 from the Institute of Low TemperatureScience 2 This is a revised form of the master's thesis of the seniorauthor (M.I.) which is cited in the present and previous papers(Sakai 1979a, b, etc.). (Received August 11, 1980; Accepted June 1, 1981)  相似文献   

2.
The freezing process and supercooling ability in flower budsof 11 native Rhododendron species were examined with referenceto the cooling rate and cold hardiness by differential thermalanalysis. The freezing patterns of the excised whole buds variedwith the season: in autumn, buds froze as whole units, whilein winter, freezing was initiated in the scales and propagatedto each floret. The supercooling ability of florets was enhancedduring winter. The freezing patterns in winter buds were stronglyinfluenced by the cooling rate (1 to 30°C/hr). Althoughthe first exotherm in scales occurred at –5 to –10°Gand was rate-independent, the occurrence of several floret exothermsshifted considerably to lower subzero temperatures at slowerrates. The most reliable cooling rate for testing maximum supercoolingability was l°C/hr. The exotherm in florets of hardier speciesoccurred at –20 to –25°C and at –7 to–20°C for less hardy ones, and were well correlatedwith their killing temperatures. Water relations within budtissues in response to freezing are briefly discussed. (Received June 26, 1980; )  相似文献   

3.
The freezing process and supercooling ability in flower budsof 11 native Rhododendron species were examined with referenceto the cooling rate and cold hardiness by differential thermalanalysis. The freezing patterns of the excised whole buds variedwith the season: in autumn, buds froze as whole units, whilein winter, freezing was initiated in the scales and propagatedto each floret. The supercooling ability of florets was enhancedduring winter. The freezing patterns in winter buds were stronglyinfluenced by the cooling rate (1 to 30°C/hr). Althoughthe first exotherm in scales occurred at –5 to –10°Gand was rate-independent, the occurrence of several floret exothermsshifted considerably to lower subzero temperatures at slowerrates. The most reliable cooling rate for testing maximum supercoolingability was l°C/hr. The exotherm in florets of hardier speciesoccurred at –20 to –25°C and at –7 to–20°C for less hardy ones, and were well correlatedwith their killing temperatures. Water relations within budtissues in response to freezing are briefly discussed. (Received June 26, 1980; )  相似文献   

4.
The relationship between supercooling ability and water contentand killing temperature of flower buds during cold acclimationand deacclimation were studied using R. kiusianum and R. x akebono.The occurrence of multiple floret exotherms and their shiftto a narrow range at lower subzero temperatures, as well asthe marked decrease of florets water content, were observedas the symptoms of cold acclimation occuring in flower budsfrom fall to winter, and vice versa in spring buds during deacclimation.In R. kiusianum, the fully acclimated period was from Novemberto March and two months longer than that of R. x akebono. Thesupercooling ability of the former was about –25°Cand about –20°C in the latter. Although the watermigration within bud tissues during the freezing process wasdetermined in the acclimated and deacclimated buds for R. xakebono, no significant water changes could be observed, evenin the acclimated buds. Thus, it is conceivable that deep supercoolingin florets may result not necessarily from water migration fromflorets and bud axes to scales in response to freezing, butfrom low water content in situ of cold-acclimated or artificiallydehydrated flower buds. (Received July 29, 1981; Accepted October 12, 1981)  相似文献   

5.
Temperature dependence of longitudinal relaxation times (T1)of water protons in flower buds of six azalea species differingin cold hardiness and ecological distribution was investigatedby pulse nuclear magnetic resonance spectroscopy. Thermal hysteresiswas observed for T1 following a slow freeze-thaw cycle. TheT1 ratio (the ratio obtained from the difference between theoriginal T1 value in an unfrozen sample and the final T1 aftera freeze-thaw treatment, both at 20C, divided by the originalT1) was closely correlated with the viability of florets innon-acclimated buds of R. kiusianum. If the buds were frozento a lethal temperature and then thawed to 20C, the T1 ratioincreased. The T1 ratios of acclimated winter buds for the sixspecies used were correlated with the level of cold hardiness(supercooling ability of florets determined by differentialthermal analysis). The T1 ratio of deacclimated spring buds,especially those from hardier species, markedly increased uponcooling to a lethal temperature. Species differences observedin acclimated winter buds disappeared upon deacclimation. TheT1 ratio appears to be related to the viability of florets andthe degree of freezing damage (membrane disruption) in florets. (Received December 28, 1984; Accepted May 24, 1985)  相似文献   

6.
The freezing behavior of dormant buds in larch, especially at the cellular level, was examined by a Cryo-SEM. The dormant buds exhibited typical extraorgan freezing. Extracellular ice crystals accumulated only in basal areas of scales and beneath crown tissues, areas in which only these living cells had thick walls unlike other tissue cells. By slow cooling (5 °C/day) of dormant buds to −50 °C, all living cells in bud tissues exhibited distinct shrinkage without intracellular ice formation detectable by Cryo-SEM. However, the recrystallization experiment of these slowly cooled tissue cells, which was done by further freezing of slowly cooled buds with LN and then rewarming to −20 °C, confirmed that some of the cells in the leaf primordia, shoot primordia and apical meristem, areas in which cells had thin walls and in which no extracellular ice accumulated, lost freezable water with slow cooling to −30 °C, indicating ability of these cells to adapt by extracellular freezing, whereas other cells in these tissues retained freezable water with slow cooling even to −50 °C, indicating adaptation of these cells by deep supercooling. On the other hand, all cells in crown tissues and in basal areas of scales, areas in which cells had thick walls and in which large masses of ice accumulated, had the ability to adapt by extracellular freezing. It is thought that the presence of two types of cells exhibiting different freezing adaptation abilities within a bud tissue is quite unique and may reflect sophisticated freezing adaptation mechanisms in dormant buds.  相似文献   

7.
Abstract A freeze-fixation technique was used to examine the distribution of ice crystals and the pattern of freezing in peach flower buds. In dormant buds, ice crystals formed at localized sites within the bud axis and scales. Ice crystal formation disrupted tissues and mechanical injury from repetitive freezethaw cycles was apparent. There was evidence of ice formation in the floral organs of dormant buds exposed to ?25°C but none observed in buds exposed to either ?5 or ?10°C. The distribution of ice crystals was different in deacclimated buds. In addition to large ice crystals within the subtending bud axis and scales, evidence of large crystals within the developing floral organs was noted. These crystals were most prominent in the lower portions of the developing flower and peduncle, and caused a separation of the epidermal layer from adjacent cells. The distribution of ice crystals within both dormant and deacclimated peach flower buds corroborated the results of previous thermal analysis experiments.  相似文献   

8.
The freezing resistance of various organs and tissues was determined in 24 Rhododendron species (mainly Subgenus Tsutsutsi) having different ecological distributions. The order of hardiness for organ or tissue is as follows: leaf bud > wood ≧ bark > flower bud, and the flower bud is characterized as the most cold-susceptible organ. The relationship of killing temperature (KT) to northern distribution was the most significant in leaf buds compared to other organs and tissues. KTs of leaf buds for the most hardy species were ?45 °C (or below) and those for the most tender species were about ?23 °C, while KTs of flower buds were about ?28 °C for the former and ?16 °C for the latter. Although KTs of flower buds native to southwestern Japan were well correlated with the exothermic temperature distribution (ETD) of florets, those in the more northern species were generally lower than ETDs. The supercooling ability of flower buds appears to be sufficient to avoid the freezing stress since the extreme minimum temperature (EMT) at the northern limit of natural distribution for each tree species examined was not lower than the KT and ETD of the flower buds.  相似文献   

9.
The relationship between freezable water and cold hardiness during acclimation was studied using vegetative buds from several apple ( Malus domestica Borkh) cultivars and from one saskatoonberry ( Amelanchier alnifolia Nutt. cv. Smoky) cultivar. According to leakage data and visual assessments of cortical browning, vegetative buds of all cultivars were most tolerant to subfreezing temperatures in January. The hardy condition was also associated with maximum tolerance to desiccation. Qualitative features of freezing exotherms (number of peaks and temperature of the transition) were not correlated with the hardy condition in the tissues. However, the amount of unfrozen water, determined by quantifying the energy of the exotherms, increased with increasing hardiness. In buds that survived exposure to −45°C, freezing reduced the intracellular water content, but only to levels above the critical moisture content for desiccation damage. In buds that did not survive exposure to −45°C, freezing reduced the water content to levels equal to or less than the critical moisture content for desiccation damage. These observations suggest that the freezing of water in nonhardy tissue dried the tissue to moisture levels at which severe dehydration damage occurred. It appears that acclimation of vegetative apple buds involves at least two processes: (1) an increase in tolerance to dehydration and (2) an increase in the level of unfreezable water.  相似文献   

10.
The frost survival mechanism of vegetative buds of angiosperms was suggested to be extracellular freezing causing dehydration, elevated osmotic potential to prevent freezing. However, extreme dehydration would be needed to avoid freezing at the temperatures down to ?45°C encountered by many trees. Buds of Alnus alnobetula, in common with other frost hardy angiosperms, excrete a lipophilic substance, whose functional role remains unclear. Freezing of buds was studied by infrared thermography, psychrometry, and cryomicroscopy. Buds of Aalnobetula did not survive by extracellular ice tolerance but by deep supercooling, down to ?45°C. An internal ice barrier prevented ice penetration from the frozen stem into the bud. Cryomicroscopy revealed a new freezing mechanism. Until now, supercooled buds lost water towards ice masses that form in the subtending stem and/or bud scales. In Aalnobetula, ice forms harmlessly inside the bud between the supercooled leaves. This would immediately trigger intracellular freezing and kill the supercooled bud in other species. In Aalnobetula, lipophilic substances (triterpenoids and flavonoid aglycones) impregnate the surface of bud leaves. These prevent extrinsic ice nucleation so allowing supercooling. This suggests a means to protect forestry and agricultural crops from extrinsic ice nucleation allowing transient supercooling during night frosts.  相似文献   

11.
Supercooling in overwintering azalea flower buds   总被引:8,自引:7,他引:1       下载免费PDF全文
Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures.  相似文献   

12.
Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below −37°C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.  相似文献   

13.
Supercooling characteristics of isolated peach flower bud primordia   总被引:1,自引:1,他引:0       下载免费PDF全文
The amount of unfrozen water in dormant peach (Prunus persica [L.] Batsch, cv Redhaven) flower buds, isolated primordia, and bud axes was determined during freezing using pulse nuclear magnetic resonance methods. Differential thermal analysis studies were conducted on whole buds and isolated primordia in the presence of ice nucleation. The results showed that some of the water in isolated primordia remained supercooled in the presence of ice nucleation. Although most tissue water froze (57.5%) following ice nucleation at −2.5°C, a considerable amount of water was found to supercool. In the presence of ice nucleation, increased hydration of isolated primordia resulted in the elimination of the supercooling characteristic. The structural integrity of isolated primordia appeared to be essential for supercooling.  相似文献   

14.
BACKGROUND: Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. METHODS: The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. KEY RESULTS: In 2003, the freezing point of primordial shoots of buds (T(f)), i.e. the low-temperature exotherm (LTE), was, on average, -39 degrees C when buds were thawed for less than 3 h and the T(f) increased to -21 degrees C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 degrees C h(-1). In 2005, buds dehardened linearly from -39 degrees C to -35 degrees C at a rate of 0.7 degrees C h(-1). In 2003, different cooling rates of 1-5 degrees C h(-1) had a minor effect on T(f) but in 2005 with slow cooling rates T(f) decreased. In both samplings, at cooling rates of 2 and 1 degrees C h(-1), T(f) was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, T(f) was somewhat lower in B-fertilized trees. CONCLUSIONS: There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.  相似文献   

15.
How plant tissues control their water behaviours (phase and movement) under subfreezing temperatures through adaptative strategies (freezing behaviours) is important for their survival. However, the fine details of freezing behaviours in complex organs and their regulation mechanisms are poorly understood, and non‐invasive visualization/analysis is required. The localization/density of unfrozen water in wintering Cornus florida flower buds at subfreezing temperatures was visualized with high‐resolution magnetic resonance imaging (MRI). This allowed tissue‐specific freezing behaviours to be determined. MRI images revealed that individual anthers and ovules remained stably supercooled to ?14 to ?21 °C or lower. The signal from other floral tissues decreased during cooling to ?7 °C, which likely indicates their extracellular freezing. Microscopic observation and differential thermal analyses revealed that the abrupt breakdown of supercooled individual ovules and anthers resulted in their all‐or‐nothing type of injuries. The distribution of ice nucleation activity in flower buds determined using a test tube‐based assay corroborated which tissues primarily froze. MRI is a powerful tool for non‐invasively visualizing unfrozen tissues. Freezing events and/or dehydration events can be located by digital comparison of MRI images acquired at different temperatures. Only anthers and ovules preferentially remaining unfrozen are a novel freezing behaviour in flower buds. Physicochemical and biological mechanisms/implications are discussed.  相似文献   

16.
The effects of various storage temperature/duration combinations(5, 10 and 17°/4, 8, 12 and 16 weeks) on cold acclimationand deacclimation of flower buds were studied in four speciesof evergreen azaleas having different natural distribution andcold hardiness. The freezing process and the exotherm temperaturedistribution of florets in excised whole buds determined bydifferential thermal analysis were used as the diagnostics todetermine the degree of bud acclimation and deacclimation. Theacclimation in buds lasted for as long as 12 to 16 weeks at5°C storage, and from 8 to 12 weeks at 10°C, and itappeared to be maintained after the chilling requirement forbreaking bud dormancy had been satisfied. Therefore, bud acclimationseems to be maintained independently from bud dormancy. Thedehardening effect on acclimated buds occurred as a result ofshort exposures to higher temperatures or long exposures tolower temperatures, and there was no relation between the rateof deacclimation and the degree of hardiness in each species.Among three storage temperatures examined, 5°C was the mosteffective for the maintenance of cold acclimation in flowerbuds and the small difference of floret water contents at 5and 10°C storage is not significant. (Received August 28, 1982; Accepted February 4, 1983)  相似文献   

17.
昆虫耐寒性研究   总被引:33,自引:4,他引:33  
景晓红  康乐 《生态学报》2002,22(12):2202-2207
昆虫是变温动物,气候变化是造成种群季节消长的基本原因之一。尤其在不良的低温环境中,昆虫耐寒力的高低是其种群存在与发展的种要前提,昆虫对低温的适应能力及其机理也因而成为昆虫生态学和生物进化研究中的一个深受重视的问题,本文论述了与耐寒性直接相关的过冷却点昆虫的抗寒对策,明确了昆虫耐寒性的一些基本概念,一方面从环境影响昆虫的角度对耐寒性的一般规律,如季节性变化,地理变异快速冷驯化的作用等做了简要的概念括,另一方面阐述了昆虫适应环境的生理生化机制,包括低分子量的抗冻物质的产生,冰核剂的作用及抗冻蛋白的功能等做了简要的概括,另一方面简单述了昆虫适应环境的生理生化机制,包括低分子量的抗冻物质的产生,冰核剂的作用及抗冻蛋白的功能等。强调昆虫与环境相互作用过程中的生态生理适应,并指出昆虫耐寒性应当与生活史中别的因素联系起来,这样才能对耐寒性有一个更加全面的理解。  相似文献   

18.
Large numbers of European ash have died in Poland in all age classes during the last ten years. The characteristic symptom occurring on shoots of planted and self‐sown seedlings was bark necroses starting from the shoot apex, necrotic buds, or leaf and twig scars. The results showed that in the bud tissue of cold acclimated European ash extracellular and intracellular ice formation occurred at approximately ?9 and ?32°C, respectively. In deacclimated plants in spring water supercooling is limited by the heterogenous ice nucleation temperature and consequently the cold tolerance is ?9 to ?4°C for bud tissues and ?13 to ?9°C for shoots. Isolations of fungi were performed from dead buds and from necroses occurring on the main stem. Alternaria alternata, Fusarium lateritium and Phomopsis scobina were among the fungi occurring in both these organs at frequencies of more than 7%. Cylindrocarpon heteronemum, Diplodia mutila and Tubercularia vulgaris from necroses were only isolated in frequencies; 3.3, 1.2 and 5.4%, respectively. It seems likely that freezing injury is the inciting factor, which combined with fungal colonization manifests itself as fatal damage to European ash buds and shoots.  相似文献   

19.
Insects that tolerate severe cold during winter may either supercool or tolerate ice forming within the tissues of the body. To compare the relative advantages of freezing and supercooling, we measured rates of CO(2) production and water loss in frozen and supercooled goldenrod gall fly larvae (Eurosta solidaginis). As an important first step, we measured the time required for ice content and metabolic rate to stabilize upon freezing. Ice content stabilized after only three hours of freezing at -5 degrees C, whereas CO(2) production required 12 hours to stabilize. Subsequent experiments found that freezing greatly reduced both water loss and metabolic rate. Comparisons of supercooled and frozen larvae at -5 degrees C indicated that CO(2) production fell 47% with freezing and water loss decreased 35%. As temperature decreased to -10 and -15 degrees C, CO(2) production fell exponentially and was no longer detectable at -20 degrees C with our measurement system. Our results demonstrate that freezing significantly reduces energy consumption during the winter and may therefore improve winter survival and spring fecundity. The advantages of freezing over supercooling would drive selection toward insect freeze tolerance and also toward higher supercooling points to increase the duration of freezing each winter.  相似文献   

20.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号