首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Wood SE  Jin J  Lloyd SA 《Journal of bacteriology》2008,190(12):4252-4262
Pathogenic yersiniae utilize a type III secretion system to inject antihost factors, called Yops, directly into the cytosol of eukaryotic cells. The Yops are injected via a needle-like structure, comprising the YscF protein, on the bacterial surface. While the needle is being assembled, Yops cannot be secreted. YscP and YscU switch the substrate specificity of the secretion system to enable Yop export once the needle attains its proper length. Here, we demonstrate that the inner rod protein YscI plays a critical role in substrate specificity switching. We show that YscI is secreted by the type III secretion system and that YscI secretion by a yscP mutant is abnormally elevated. Furthermore, we show that mutations in the cytoplasmic domain of YscU reduce YscI secretion by the yscP null strain. We also demonstrate that mutants expressing one of three forms of YscI (those with mutations Q84A, L87A, and L96A) secrete substantial amounts of Yops yet exhibit severe defects in needle formation. In the absence of YscP, mutants with the same changes in YscI assemble needles but are unable to secrete Yops. Together, these results suggest that the formation of the inner rod, not the needle, is critical for substrate specificity switching and that YscP and YscU exert their effects on substrate export by controlling the secretion of YscI.  相似文献   

2.
The pathogenic Yersinia species share a conserved type III secretion system, which delivers cytotoxic effectors known as Yops into target mammalian cells. In all three species, YopK (also called YopQ) plays an important role in regulating this process. In cell culture infections, yopK mutants inject higher levels of Yops, leading to increase cytotoxicity; however, in vivo the same mutants are highly attenuated. In this work, we investigate the mechanism behind this paradox. Using a β-lactamase reporter assay to directly measure the effect of YopK on translocation, we demonstrated that YopK controls the rate of Yop injection. Furthermore, we find that YopK cannot regulate effector Yop translocation from within the bacterial cytosol. YopE is also injected into host cells and was previously shown to contribute to regulation of the injectisome. In this work we show that YopK and YopE work at different steps to regulate Yop injection, with YopK functioning independently of YopE. Finally, by expressing YopK within tissue culture cells, we confirm that YopK regulates translocation from inside the host cell, and we show that cells pre-loaded with YopK are resistant to Yop injection. These results suggest a novel role for YopK in controlling the Yersinia type III secretion system.  相似文献   

3.
Pathogenic Yersinia species use a type III secretion system to inhibit phagocytosis by eukaryotic cells. At 37 degrees C, the secretion system is assembled, forming a needle-like structure on the bacterial cell surface. Upon eukaryotic cell contact, six effector proteins, called Yops, are translocated into the eukaryotic cell cytosol. Here, we show that a yscP mutant exports an increased amount of the needle component YscF to the bacterial cell surface but is unable to efficiently secrete effector Yops. Mutations in the cytoplasmic domain of the inner membrane protein YscU suppress the yscP phenotype by reducing the level of YscF secretion and increasing the level of Yop secretion. These results suggest that YscP and YscU coordinately regulate the substrate specificity of the Yersinia type III secretion system. Furthermore, we show that YscP and YscU act upstream of the cell contact sensor YopN as well as the inner gatekeeper LcrG in the pathway of substrate export regulation. These results further strengthen the strong evolutionary link between flagellar biosynthesis and type III synthesis.  相似文献   

4.
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant‐negative yscF alleles that prevented effector secretion in the presence of wild‐type (WT) YscF. One allele, yscF‐L54V, prevents WT YscF secretion and needle assembly, although purified YscF‐L54V polymerizes in vitro. YscF‐L54V binds to its chaperones YscE and YscG, and the YscF‐L54V–EG complex targets to the T3SS ATPase, YscN. We propose that YscF‐L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF‐L54V does not affect the activity of pre‐assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate‐specific binding site as a mechanism to exclude early substrates from Yop‐secreting machines.  相似文献   

5.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

6.
'Type III secretion' allows extracellular adherent bacteria to inject bacterial effector proteins into the cytosol of their animal or plant host cells. In the archetypal Yersinia system the secreted proteins are called Yops. Some of them are intracellular effectors, while YopB and YopD have been shown by genetic analyses to be dedicated to the translocation of these effectors. Here, the secretion of Yops by Y.enterocolitica was induced in the presence of liposomes, and some Yops, including YopB and YopD, were found to be inserted into liposomes. The proteoliposomes were fused to a planar lipid membrane to characterize the putative pore-forming properties of the lipid-bound Yops. Electrophysiological experiments revealed the presence of channels with a 105 pS conductance and no ionic selectivity. Channels with those properties were generated by mutants devoid of the effectors and by lcrG mutants, as well as by wild-type bacteria. In contrast, mutants devoid of YopB did not generate channels and mutants devoid of YopD led to current fluctuations that were different from those observed with wild-type bacteria. The observed channel could be responsible for the translocation of Yop effectors.  相似文献   

7.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

8.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

9.
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.  相似文献   

10.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

11.
Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned "on." In a further set, it was "constitutively on" but experimentally "uninducible." Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to "sense" host cells.  相似文献   

12.
The type III secretion system tip complex and translocon   总被引:2,自引:0,他引:2  
The type III secretion machinery of Gram-negative bacteria, also known as the injectisome or needle complex, is composed of a basal body spanning both bacterial membranes and the periplasm, and an external needle protruding from the bacterial surface. A set of three proteins, two hydrophobic and one hydrophilic, are required to allow translocation of proteins from the bacterium to the host cell cytoplasm. These proteins are involved in the formation of a translocation pore, the translocon, in the host cell membrane. Exciting progress has recently been made on the interaction between the translocators and the injectisome needle and the assembly of the translocon in the host cell membrane. As expected, the two hydrophobic translocators insert into the target cell membrane. Unexpectedly, the third, hydrophilic translocator, forms a complex on the distal end of the injectisome needle, the tip complex, and serves as an assembly platform for the two hydrophobic translocators.  相似文献   

13.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

14.
To establish an infection, Yersinia pseudotuberculosis utilizes a plasmid-encoded type III translocon to microinject several anti-host Yop effectors into the cytosol of target eukaryotic cells. YopD has been implicated in several key steps during Yop effector translocation, including maintenance of yop regulatory control and pore formation in the target cell membrane through which effectors traverse. These functions are mediated, in part, by an interaction with the cognate chaperone, LcrH. To gain insight into the complex molecular mechanisms of YopD function, we performed a systematic mutagenesis study to search for discrete functional domains. We highlighted amino acids beyond the first three N-terminal residues that are dispensable for YopD secretion and confirmed that an interaction between YopD and LcrH is essential for maintenance of yop regulatory control. In addition, discrete domains within YopD that are essential for both pore formation and translocation of Yop effectors were identified. Significantly, other domains were found to be important for effector microinjection but not for pore formation. Therefore, YopD is clearly essential for several discrete steps during efficient Yop effector translocation. Recognition of this modular YopD domain structure provides important insights into the function of YopD.  相似文献   

15.
Pathogenic yersiniae secrete the Yop anti-host proteins using a type-III secretion pathway. The components of the secretion machinery are encoded by three loci on the pYV plasmid: virA, virB, and virC . In this paper we describe the characterization of eight non-polar mutants of the virC locus, constructed by allelic exchange. The yscE, FG, I, J and K mutants were defective in Yop secretion and independent of Ca2+ (Cl) for their growth at 37°C. Substitution of the 12 N-terminal amino-acid residues of YscF impaired secretion of YopB and YopD only and led also to a Cl phenotype. The culture supernatant of the yscH mutant contained all the Yops except the 18 kDa YopR. Complementation experiments and an immunoblot analysis confirmed that YopR is encoded by the yscH gene. The LD50 for the mouse of the yscH mutant was 10-fold higher than that of the parental strain indicating that YopR is involved in pathogenesis. The phenotype of the yscM mutant was similar to that of the wild-type strain. However, overproduction of YscM from a multicopy plasmid in wild-type Yersinia enterocolitica prevented Yop secretion and synthesis. A hybrid YopH—LacZ' protein, encoded by a gene transcribed from the lac promoter, was secreted by a strain overexpressing YscM, showing that the secretion machinery was still functional. These results indicate that YscM plays a role in the feedback inhibition of Yop synthesis when secretion is compromised by acting as a negative regulator of Yop synthesis.  相似文献   

16.
The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens secrete and subsequently translocate antihost effector proteins into target eukaryotic cells by a common type III secretion system (TTSS). In this process, YopD (Yersinia outer protein D) is essential to establish regulatory control of Yop synthesis and the ensuing translocation process. YopD function depends upon the non-secreted TTSS chaperone LcrH (low-calcium response H), which is required for presecretory stabilization of YopD. However, as a new role for TTSS chaperones in virulence gene regulation has been proposed recently, we undertook a detailed analysis of LcrH. A lcrH null mutant constitutively produced Yops, even when this strain was engineered to produce wild-type levels of YopD. Furthermore, the YopD-LcrH interaction was necessary to regain the negative regulation of virulence associated genes yops). This finding was used to investigate the biological significance of several LcrH mutants with varied YopD binding potential. Mutated LcrH alleles were introduced in trans into a lcrH null mutant to assess their impact on yop regulation and the subsequent translocation of YopE, a Rho-GTPase activating protein, across the plasma membrane of eukaryotic cells. Two mutants, LcrHK20E, E30G, I31V, M99V, D136G and LcrHE30G lost all regulatory control, even though YopD binding and secretion and the subsequent translocation of YopE was indistinguishable from wild type. Moreover, these regulatory deficient mutants showed a reduced ability to bind YscY in the two-hybrid assay. Collectively, these findings confirm that LcrH plays an active role in yop regulation that might be mediated via an interaction with the Ysc secretion apparatus. This chaperone-substrate interaction presents an innovative means to establish a regulatory hierarchy in Yersinia infections. It also raises the question as to whether or not LcrH is a true chaperone involved in stabilization and secretion of YopD or a regulatory protein responsible for co-ordinating synthesis of Yersinia virulence determinants. We suggest that LcrH can exhibit both of these activities.  相似文献   

17.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

18.
Type III secretion apparatus (T3SA) are complex nanomachines that insert a translocation pore into the host cell membrane through which effector proteins are injected into the cytosol. In Shigella, the pore is inserted by a needle tip complex that also controls secretion. IpaD is the key protein that rules the composition of the tip complex before and upon cell contact or Congo red (CR) induction. However, how IpaD is involved in secretion control and translocon insertion remains not fully understood. Here, we report the phenotypic analysis of 20 10‐amino acids deletion variants all along the coiled‐coil and the central domains of IpaD (residues 131–332). Our results highlight three classes of T3S phenotype; (i) wild‐type secretion, (ii) constitutive secretion of all classes of effectors, and (iii) constitutive secretion of translocators and early effectors, but not of late effectors. Our data also suggest that the composition of the tip complex defines both the T3SA inducibility state and late effectors secretion. Finally, we shed light on a new aspect regarding the contact of the needle tip with cell membrane by uncoupling the Shigella abilities to escape macrophage vacuole, and to insert the translocation pore or to invade non‐phagocytic cells.  相似文献   

19.
Type III secretion enables bacteria to intoxicate eukaryotic cells with anti‐host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore. Here, four in cis yopD mutations were constructed to disrupt a predicted α‐helix motif at the C‐terminus. Mutants YopDI262P and YopDK267P poorly localized Yop effectors into target eukaryotic cells and failed to resist uptake and killing by immune cells. These defects were due to deficiencies in host‐membrane insertion of the YopD–YopB translocon. Mutants YopDA263P and YopDA270P had no measurable in vitro translocation defect, even though they formed smaller translocon pores in erythrocyte membranes. Despite this, all four mutants were attenuated in a mouse infection model. Hence, YopD variants have been generated that can spawn translocons capable of targeting effectors in vitro, yet were bereft of any lethal effect in vivo. Therefore, Yop translocators may possess other in vivo functions that extend beyond being a portal for effector delivery into host cells.  相似文献   

20.
Many Gram-negative pathogens use a type III secretion machine to translocate protein toxins across the bacterial cell envelope. Pathogenic Yersinia spp. export at least 14 Yop proteins via a type III machine, which recognizes secretion substrates by signals encoded in yop mRNA or chaperones bound to unfolded Yop proteins. During infection, substrate recognition appears to be regulated in a manner that allows the Yersinia type III pathway to direct Yops to the bacterial envelope, the extracellular medium or into the cytosol of host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号