首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kolb D  Müller M 《Annals of botany》2004,94(4):515-526
BACKGROUND AND AIMS: In the present study, the differences between glandular and non-glandular trichomes, the secretory process and the method of secretion were studied. Previous studies on leaves of Styrian oil pumpkin (Cucurbia pepo var. styriaca) plants have shown that four morphologically and ontogenetically independent glandular and non-glandular trichome types and one bristle hair type can be distinguished. The four types of trichomes can be categorized into three glandular trichome types: type I, a short-stalked trichome with four head cells including a 'middle-cell', two stalk cells and one basal cell; type II, a long-stalked trichome with two head cells, a 'neck-cell' region and a long stalk area; type IV, a 'stipitate-capitate' trichome with a mesophyll cell basement, a short stalk and a multicellular head; type III, a non-glandular 'columnar-digit' trichome, which consists of two head cells continuous with three-celled stalk, and the basal cell. METHODS: The histochemical studies (the main classes of metabolite in secreted material of glandular trichomes) were conducted in fresh and fixed hand sections, using the following tests: Sudan black B, Nile blue A, osmium tetroxide, neutral red, Naturstoffreagent A, FSA (fuchsin-safranin-astra blue), NADI (naphthol + dimethylparaphenylenediamine) and ruthenium red. Each suggested differences in the intercalations during the ontogenetical development of each trichome during the development stage. KEY RESULTS: The histochemical reactions revealed the main components of the materials secreted by all types of trichomes, which include lipids, flavones and terpenes and the different cell wall compositions. Glandular secretions were observed during environmental scanning electron microscopy (ESEM) and the trichomes compared with those seen by conventional scanning electron microscopy (CSEM). CONCLUSIONS: Scanning electron microscopy and histochemical analysis demonstrated that each of the trichomes studied produced and released secretory products in a characteristic way.  相似文献   

2.
The structure of the essential oil secretory tissues of Prostanthera ovalifolia R.Br was investigated using bright- and dark-field optical microscopy, and scanning and transmission electron microscopy. The leaves of P. ovalifolia have glandular trichomes of the peltate type common to many Lamiaceae species. The trichomes consist of a basal cell embedded in the epidermis, a stalk cell with heavily cutinized walls and a 16-celled secretory head, but they differ from those of many previously reported Lamiaceae species in their morphological form defined by the elevated cuticle. The sub-cuticular space contains a mixture of lipid and aqueous phases. Secretory cells have dense cytoplasm with many leucoplasts present. Volatile terpenoids are eliminated from the cytoplasm into the sub-cuticular space, the site of essential oil accumulation, via granulocrine secretion.  相似文献   

3.
LYSHEDE  OLE B. 《Annals of botany》1980,46(5):519-526
The potato plant has two types of glandular trichomes whichwere investigated by electron microscopy. One type has a eight celled globular head on a neck cell anda stalk cell Each glandular cell has many rather large vacuoles,a large nucleus, many ribosomes and mitochondria, a few Golgibodies, and darkly coloured, often irregular plastids (chloroplasts).The plastids are mostly located near the axial cell wall borderinga large central intercellular space filled with secretion materialThe plastids are assumed to participate in the formation ofthe secretion material, which reacts positively to esterasetests. The outer wall is covered by a thin cuticle. The other type has a club-shaped multicellular head on a singlestalk cell. The cytoplasmic features in the cells are similarto those of the globular-headed trichome, except that they possesslarge central vacuoles and randomly distributed plastids. Centricendoplasmic reticulum has been observed in young cells. Intercellularspaces develop between the cells and into the outer wall, whichis thus split into two. Whereas the older glandular cells reactpositively to tests for esterase, the secretion material itselfis pectinaceous and reacts negatively. The outer wall is cutinizedand covered by a cuticle. Solanum tuberosum L., potato, glandular trichomes, ultrastructure  相似文献   

4.
Previous studies have shown that capitate glandular trichomes (CGT) of the common sunflower, Helianthus annuus, produce sesquiterpene lactones (STL) and flavonoids, which are sequestered and accumulated between the apical cuticle and the wall of the tip cells. To explore the cellular structures required and putatively involved in the STL biosynthesis and secretion, the present study was focused on the development of CGT and the comparison of the ultrastructure of its different cell types. Gradual maturation of flowers in the capitulum of the sunflower provided the possibility to study the simultaneous differentiation from the primordial to the secretory stage of CGT located by light microscopy (bright field, differential interference contrast and fluorescence) as well as transmission electron microscopy. It was shown that the CGT of sunflower anthers had a biseriate structure with up to 14 cell pairs. In mature trichomes, the apical cells called secretory cells were covered entirely by a large cuticle globe, which enclosed the resinous terpenoids and was specialised in thickness and structure. The secretory cells lacked chloroplasts and contained mainly smooth endoplasmic reticulum (sER). Conspicuous cell wall protuberances and an accumulation of mitochondria nearby occurred in the horizontally oriented cell walls. The cytological differences between stalk cells and secretory cells indicate a different function. The dominance of sER suggests its involvement in STL biosynthesis and cell wall protuberances enlarge the surface of the plasmamembrane of secretory cells and may be involved in the secretion processes of STL into the subcuticular space.  相似文献   

5.
利用光学显微镜、扫描电镜和透射电镜技术,观察了龙葵“四叶一心”期时叶片及茎表皮的腺毛的种类、分布,探究了不同类型腺毛的起源、生长、成熟、分泌、衰老等发育过程的细胞学特征;通过组织化学染色和荧光显微技术,观察了龙葵腺毛成分、分布,为龙葵的进一步开发利用提供参考。结果表明:(1)龙葵腺毛分为单细胞头腺毛和多细胞头腺毛两类,前者主要分布于茎表面和叶上下表皮,后者主要分布于茎表面的单细胞头腺毛之间、叶脉及叶边缘;(2)龙葵腺毛发育起始于表皮细胞突起,单细胞头腺毛行顶端生长,具1-4个柄细胞,四种类型;多细胞头腺毛可再分为一层、两层与三层多细胞头腺毛,另具三种特殊类型;(3)龙葵成熟腺毛具分泌能力,通过皮下空间的物质积累导致腺毛头细胞表面形成突起、包块、破口,最终释放分泌物;而头细胞与柄细胞随即皱缩、衰老。(4)超微结构显示,腺毛头细胞中内质网与高尔基体极为丰富,合成代谢及分泌活动活跃,产生大量包裹嗜锇物质的囊泡,囊泡与细胞壁融合,进而将嗜锇物质转移至细胞壁并积累,随后储存在角质层下的皮下空间直至分泌释放;(5)组织化学染色结果表明,腺毛含有萜类、生物碱、脂类、蛋白质、酚类和多糖。头细胞中主要含有萜类、生物碱、脂类、蛋白质、酚类和中性多糖;柄细胞中主要含有萜类、生物碱、脂类。  相似文献   

6.
Naidoo Y  Karim T  Heneidak S  Sadashiva CT  Naidoo G 《Planta》2012,236(4):1215-1226
This study was initiated to characterize the distribution, morphology, secretion mode, histochemistry and ultrastructure of the glandular trichomes of Ceratotheca triloba using light and electron microscopy. Its leaves bear two morphologically distinct glandular trichomes. The first type has long trichome with 8-12 basal cells of pedestal, 3-14 stalk cells, a neck cell and a head of four cells in one layer. The second type has short trichome comprising one or two basal epidermal cells, a unicellular or bicellular stalk and a multicellular head of two to eight cells. There is a marked circular area in the upper part of each head cell of the long trichome. This area is provided with micropores to exudate directly the secretory product onto the leaf surface by an eccrine pathway. The secretory product has copious amount of dark microbodies arising from plastids which are positive to Sudan tests and osmium tetroxide for unsaturated lipids. The secretion mode of short trichomes is granulocrine and involves two morphologically and histochemically distinct vesicle types: small Golgi-derived vesicles which are positive to Ruthenium Red test for mucilaginous polysaccharides; the second type is dark large microbodies similar to that of long trichomes with low quantity. These two types are stored in numerous peripheral vacuoles and discharge their contents accompanied by the formation of irregular invaginations of the plasmalemma inside the vacuoles via reverse pinocytosis. These two secretion modes of long and short trichomes are reported for the first time in the family Pedaliaceae. The long trichomes have more unsaturated lipids, while the short trichomes contain more mucilaginous polysaccharides.  相似文献   

7.
Mucilage-secreting dendroid trichomes develop from the adaxial epidermis of young stipules surrounding the shoot apex. Each trichome consists of a multicellular stalk from which radiate many branch cells. The trichome has no cuticle and the branch cell walls distally are loose cellulosic frameworks. Dictyosomes produce vesicles whose products are secreted through the plasma-lemma and cell wall. Enlarged portions of the ER are frequently associated with dictyosomes and may be part of the system for synthesis and transport of secretion products. Bacteria, which later occur in leaf nodules, are present in the mucilage surrounding trichomes and young leaves. The latter develop stomata through which the bacteria enter. As stipules and leaves grow out of the apical region, the secretory trichomes degenerate and are replaced by non-secretory ones.  相似文献   

8.
This study characterises the micromorphology, ultrastructure and main chemical constituents of the foliar glandular trichomes of Ocimum obovatum using light and electron microscopy and a variety of histochemical tests. Two types of glandular trichomes occur on the leaves: large peltate and small capitate. The head of each peltate trichome is made up of four broad head cells in one layer. The head of each capitate trichome is composed of two broad head cells in one layer (type I) or a single oval head cell (type II, rare). In peltate heads, secretory materials are gradually transported to the subcuticular space via fracture in the four sutures at the connecting walls of the head cells. Release to the head periphery occurs through opposite fracture in the four sutures in the head cuticle. In type I capitate trichomes, release of the secretions to the subcuticular space occurs via a pore between the two head cells, and release to the head periphery occurs through the opposite pore in the head cuticle. In type II capitate trichomes, the secreted material is released from the head cell through a ruptured particular squared area at the central part of the head cuticle. These secretion modes are reported for the first time in the family Lamiaceae. Histochemical tests showed that the secretory materials in the glandular trichomes are mainly essential oils, lipophilic substances and polysaccharides. Large peltate trichomes contain a large quantity of these substances than the small capitate trichomes. Ultrastructural evidence suggests that the plastids produce numerous lipid droplets, and the numerous polysaccharide small vesicles are derived from Golgi bodies.  相似文献   

9.
《Annals of botany》1999,83(1):87-92
This paper reports the results of a study of the morphology and development of glandular trichomes in leaves ofCalceolaria adscendensLidl. using light and electron microscopy. Secretory trichomes started as outgrowths of epidermal cells; subsequent divisions gave rise to trichomes made up of a basal epidermal cell, a stalk cell and a two-celled secretory head. Ultrastructural characteristics of trichome cells were typical of terpene-producing structures. Previous phytochemical studies had revealed thatC. adscendensproduces diterpenes. Comparison withC. volckmanni,which produces triterpenes, and has trichomes with eight-celled secretory heads, suggests that there could be a relationship between the type of glandular trichome and the class of terpene produced. Further work is needed to test the hypothesis and to develop trichome characters as taxonomic tools.  相似文献   

10.
Summary A vacuolar continuum exists from base to tip in the secretory trichomes of chickpea (Cicer arietinum). This continuum is seen in living trichomes which have been labeled with Lucifer yellow CH and examined with confocal microscopy. It encompasses the large vacuole of the lower stalk cell, the vacuoles and tubules of the central stalk cell, the thin tubules of the upper stalk cell, and the tubules and vacuoles of the secretory head cells. The vacuolar-tubular system is structurally distinct within each cell, forming a gradient of large vacuoles in the lower stalk cell, thick tubules in the central stalk cell, and thin anastamozing tubules in the upper stalk cell. This membrane system appears to be continuous between trichome cells, as thin tubules emanate from plasmodesmata between stalk cells and between the upper stalk and lower head cell. In the upper stalk cell, the thin tubules of this continuum are streaming up and down the long axis of the cell at 0.67 m/s. The larger vacuolar-tubular system in the central and lower stalk cells is also slowly moving, with apparent peristalsis occurring in the central cell. The vacuolar-tubular system of the secretory head cells is completely labeled with Lucifer yellow when the dye has only partly diffused up the long walls of the trichome, indicating that the streaming tubular system delivers solute through the stalk cells to the secretory head cells faster than diffusion through the trichome walls. In the lower head cells, tubules emanate from the plasmodesmata connecting to the upper stalk cell, and these tubules are continuous with the head cell vacuoles. In addition, another layer of thin tubules forms along the edges of the secretory head cells, at the site of exocytotic secretion. We propose that the continuous vacuolar-tubular system in these trichomes functions to rapidly deliver solute from the base of the trichome to the secretory head cells. This system provides a pathway for the transport of secretory material.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

11.
Nectary trichomes of Abutilon striatum var. thompsonii arise by sequential periclinal divisions of outpushings from epidermal cells so producing trichomes that, when mature, are about 12 cells long. All epidermal cells within the nectary undergo this transformation. Later, anticlinal divisions lead to a multiseriate lower part of the trichome. The original epidermal cell becomes the basal cell which increases substantially in volume during development, thus leading to lateral separation of the trichomes. Above the basal cell is the stalk cell which develops an apoplastic barrier in its anticlinal (outer) wall. Secretion ultimately takes place from a capitate tip cell. An initially very thin cuticular layer, which overlies the whole trichome, eventually becomes as thick as the cell wall itself (approx. 0.4 μm). The pre-secretory hairs contain numerous small, condensed mitochondria; poorly differentiated plastids; dictyosomes with coated vesicles; small vacuoles; and a large amount of smooth endoplasmic reticulum ("secretory reticulum") which contrasts with the rough endoplasmic reticulum seen during earlier developmental stages. As secretion proceeds, vacuolation becomes more extensive. Plasmodesmata are present between all the cells of the trichome and diminish in frequency from about 12.0 μm-2 in the stalk cell to about 4.0 μm-2 in the apical cells. This variation in plasmodesmatal frequency along the trichome is seen at all stages of development. The ultrastructural evidence would be consistent with the hypothesis that the pre-nectar flows through the plasmodesmata from cell to cell, is loaded into a "secretory compartment", and is then unloaded into the apoplast from all cells of the trichome distal to the stalk cell.  相似文献   

12.
The dendroid colleters of the leaf nodulated Rubiaceous shrubPsychotria kirkii Hiern. have been studied with respect to theirdevelopment, structure and function. The colleters, which arisefrom the adaxial surface of stipules of apical and lateral shoots,secrete a protein/carbohydrate mucilaginous substance in whichis maintained a colony of leaf nodule bacteria. The colletersare multicellular and multiseriate, consisting of a two to fourcell thick stalk from which radiate up to 70 elongate secretorybranch cells. Cuticle envelops both stalk and branch cells inearly developmental stages and as secretory activity increasesthis cuticle is largely lost in two different ways. The majorpart is forced off the branch cell surface through the passageof a largely carbohydrate component of the mucilage which surroundsthe colleters: a second method of cuticle loss involves thepassage from the cell of small electron-translucent bodies whichbecome coated with cuticle as they exit the cell. The mucilagein which the bacterial cells are found provides a vehicle wherebythe bacteria are able to enter the leaves, thus leading to theinitiation of leaf nodules. Psychotria kirkii Hiern., secretory dendroid colleters, symbiosis, ultrastructure, trichome development  相似文献   

13.
The ultrastructure of the glandular trichomes and secretory ducts of Grindelia pulchella was studied. Plastids, mitochondria and endoplasmic reticulum are involved in the secretory process of both, trichomes and ducts. A special tissue with “transfer cells” is associated with the duct epithelial cells. The secretion is produced in the transfer cells and then is transferred to the duct epithelial cells where it accumulates in the vacuoles. The occurrence of cavities within the cell walls of the trichome cells and duct epithelial cells is described. The secretion is accumulated between the cell wall and the cuticle of these cells. When the cuticle is broken the secretion is released. We conclude that granulocrine secretion operates in this species.  相似文献   

14.
Salt stress is harmful to plants, especially for those that live under conditions of intense salt aport. For this reason, several species present alternatives to prevent or diminish the damages that high salt concentrations may cause to the cells. Salt glands are one of these alternatives once they are specialized structures that secrete salt. Here, we aimed to investigate if the glandular trichomes in the leaves of Jacquinia armillaris are salt glands. Anatomical and ultrastructural observations showed that the glandular trichomes in J. armillaris resemble the salt glands from other recretohalophytes Primulaceae, such as, their occurrence in sunken regions in the leaf epidermis, the presence of a large basal cell that acts as a collecting cell, the detachment of the cuticle from the outer periclinal walls forming a cuticular chamber, the thickness of the cuticle in the stalk portion of the trichome, and the presence of sodium and chloride ions in the secretion and in the xylem. Altogether, the gathered results support the hypothesis that the glandular trichomes in J. armillaris are adapted to salt secretion, thus characterizing as salt glands.  相似文献   

15.
Pseudopollen: Its Structure and Development in Maxillaria(Orchidaceae)   总被引:1,自引:0,他引:1  
Histochemical analyses of the pseudopollen of ten species ofMaxillaria sectionGrandiflorae revealed that the main storageproduct is protein, although starch is usually also present.Lipids are rare in pseudopollen and thus do not seem to playan important role in attracting insects. In Maxillaria sanderiana,pseudopollen is formed by the fragmentation of multicellular,uniseriate trichomes, derived by the repeated division of asingle, papilla-like, basal secretory cell that contains well-developeddictyosomes, endoplasmic reticulum and mitochondria. At first,there is continuity of cytoplasm between adjacent componentcells of a trichome via plasmodesmata. During maturation, thecytoplasm retracts as the cell volume increases and the plasmodesmatabecome less obvious. Each component cell of the trichome eventuallycomprises a large protein body and a small amount of peripheralcytoplasm containing amyloplasts, a few small lipid bodies,mitochondria and a nucleus with nucleolus. Finally, the trichomeundergoes fragmentation, forming individual cells or chainsof cells of varying lengths. Light microscopy observations indicatea similar sequence in the other species examined. The occurrenceof pseudopollen in section Grandiflorae and alliance Splendensmay indicate that this character has evolved at least twicein Maxillaria. Copyright 2000 Annals of Botany Company Bees, farina, histochemistry, labellum, low-vacuum scanning electron microscopy, Maxillaria, Orchidaceae, pseudopollen, transmission electron microscopy, trichomes  相似文献   

16.
The types of glandular trichomes, their ontogeny and patternof distribution on the vegetative and reproductive organs ofLeonotis leonurus at different stages of development, are studiedby light and scanning electron microscopy. Two morphologicallydistinct types of glandular trichomes (peltate and capitate)are described. Peltate trichomes, at the time of secretion,are characterized by a short stalk, which is connected witha large spherical head composed of eight cells in a single layer.Capitate trichomes can be divided into various types. Generally,they consist of a four-celled head supported by one or threestalk cells. The two kinds of trichomes differ in the secretionprocess. In the peltate trichomes, the secretory product seemsto remain accumulated in a subcuticular space, unless an externalfactor damages it. In the capitate trichomes, this product probablybecomes released through micropores. On the leaves peltate andcapitate trichomes are abundant, while on the flowers only thepeltate trichomes are numerous and the capitate are rare orabsent.Copyright 1995, 1999 Academic Press Leonotis leonurus R. Br., lion's ear, lion's tail, Lamiaceæ, glandular trichomes, morphology, ontogeny  相似文献   

17.

Background and Aims

A significant proportion of orchid species assigned to subtribe Oncidiinae produce floral oil as a food reward that attracts specialized bee pollinators. This oil is produced either by glabrous glands (epithelial elaiophores) or by tufts of secretory hairs (trichomal elaiophores). Although the structure of epithelial elaiophores in the Oncidiinae has been well documented, trichomal elaiophores are less common and have not received as much attention. Only trichomal elaiophores occur in the genus Lockhartia, and their distribution and structure are surveyed here for the first time.

Methods

Flowers of 16 species of Lockhartia were studied. The location of floral elaiophores was determined histochemically and their anatomical organization and mode of oil secretion was investigated by means of light microscopy, scanning electron microscopy and transmission electron microscopy.

Key Results and Conclusions –

All species of Lockhartia investigated have trichomal elaiophores on the adaxial surface of the labellum. Histochemical tests revealed the presence of lipoidal substances within the labellar trichomes. However, the degree of oil production and the distribution of trichomes differed between the three major groups of species found within the genus. All trichomes were unicellular and, in some species, of two distinct sizes, the larger being either capitate or apically branched. The trichomal cuticle was lamellate, and often appeared distended due to the subcuticular accumulation of oil. The labellar trichomes of the three species examined using transmission electron microscopy contained dense, intensely staining cytoplasm with apically located vacuoles. Oil-laden secretory vesicles fused with the plasmalemma and discharged their contents. Oil eventually accumulated between the cell wall and cuticle of the trichome and contained electron-transparent profiles or droplets. This condition is considered unique to Lockhartia among those species of elaiophore-bearing Oncidiinae studied to date.  相似文献   

18.
Electron microscopy confirms previous light microscope observations that tobacco leaf trichomes are glandular and that there are two different types. Both the tall trichome (multicellular stalk, unicellular or multicellular head) and the short trichome (unicellular stalk; multicellular head) exhibit characteristics common to gland cells—a dense cytoplasm, numerous mitochondria, and little vacuolation. The tall trichome contains structurally well developed chloroplasts and an elaborate network of endoplasmic reticulum. The short trichome contains undifferentiated plastids and endoplasmic reticulum which parallels the nucleus and plasmalemma. Few dictyosomes are seen either in the short trichome or in the tall trichome. The short trichome appears to undergo structural changes concurrently with the appearance of secretory product within the cells. The most noticeable change is the formation of the extraplasmic space between the cell wall and the plasmalemma. Electron dense secretory product is observed between the plasmalemma and the cell wall and within the intercellular spaces.  相似文献   

19.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

20.
  • In Metrodorea nigra, a Rutaceae species with rhythmic growth, the shoot apex in the dormant stage is enclosed by modified stipules. The young organs are fully covered with peltate secretory trichomes, and these structures remain immersed in a hyaline exudate within a hood-shaped structure. Our study focused on the morpho-functional characterization of the peltate trichomes and cytological events associated with secretion.
  • Shoot apices were collected during both dormant and active stages and processed for anatomical, cytochemical and ultrastructural studies.
  • Trichomes initiate secretion early on, remain active throughout leaf development, but collapse as the leaves expand; at which time secretory cavities start differentiation in the mesophyll and secretion increases as the leaf reaches full expansion. The subcellular apparatus of the trichome head cells is consistent with hydrophilic and lipophilic secretion. Secretion involves two vesicle types: the smaller vesicles are PATAg-positive (periodic acid/thiocarbohydrazide/silver proteinate) for carbohydrates and the larger ones are PATAg-negative. In the first phase of secretory activity, the vesicles containing polysaccharides discharge their contents through exocytosis with the secretion accumulating beneath the cuticle, which detaches from the cell wall. Later, a massive discharge of lipophilic substances (lipids and terpenes/phenols) results in their accumulation between the wall and cuticle. Release of the secretions occurs throughout the cuticular microchannels.
  • Continued protection of the leaves throughout shoot development is ensured by replacement of the collapsed secretory trichomes by oil-secreting cavities. Our findings provide new perspectives for understanding secretion regulation in shoot apices of woody species with rhythmic growth.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号