首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast alcohol dehydrogenase (Y-ADH) is widely studied for its biotechnological importance and various attempts to improve its catalytic properties have been made. In this paper, a catalytically active metal-substituted Y-ADH was prepared in vitro by substituting one zinc atom with copper. EPR and Raman spectroscopy suggest that copper maintains the same co-ordination geometry as zinc in native Y-ADH. The active Cu-ADH shows lower substrate affinity and lower specific activity (SA) than native ADH, but greater than a previously obtained Co-ADH. Furthermore, Cu-ADH maintains its catalytic efficiency in a wider pH range than native enzyme.  相似文献   

2.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

3.
The catalytic and non-catalytic Zn atom pairs of horse liver alcohol dehydrogenase (LADH) have been replaced sequentially either by 65Zn, Co or 65Zn and Co. The Co derivatives exhibit characteristic spectra. When Co replaces the Zn atoms which exchange secondly, enzymatic activity is altered, and both imidazole and 1,10-phenanthroline (OP) significantly modify the spectrum of the catalytic Co atoms. Further, due to the removal of cobalt, the instantaneous and reversible OP inhibition of the native enzyme becomes time-dependent and irreversible. Jointly, these data identify the pair of metal atoms of LADH which exchange secondly under the present conditions as the catalytic one. The approach described provides a basis for the differentiation of catalytic and non-catalytic metal atoms of multichain metalloenzymes.  相似文献   

4.
B Holmquist 《Biochemistry》1977,16(21):4591-4594
The neutral protease isolated from Bacillus cereus (BRL-70) has been purified by affinity chromatography and characterized. The enzyme exhibits a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has a molecular weight of 34 000 by ultracentrifugation, and contains one enzymatically essential zinc atom per 34 000 g. These data together with the amino acid composition, response to metal substitution, chemical modification, and substrate specificity all indicate that this protease is monomeric and is a typical bacterial neutral metalloprotease.  相似文献   

5.
Yeast alcohol dehydrogenase, purified from baker's yeast under conditions which exclude contamination by extraneous metal ions, is homogeneous by analytical ultracentrifugation and disc gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a molecular weight of 149,000 as determined by ultracentrifugation time-lapse photography and exhibits specific activities of 430 to 480 U/mg. Zinc analysis by three independent, highly sensitive methods, i.e., atomic absorption spectrometry, atomic fluorescence spectrometry, and microwave-induced plasma emission spectrometry, demonstrates 4 g-atom of catalytically essential Zn per mole of enzyme. No other metal atoms are present in stoichiometrically significant quantities as assessed by emission spectrography. The Stoichiometry of coenzyme binding, 4 mol of NADH/mol of enzyme, is identical to that of zinc, consistent with one coenzyme binding site and one zinc atom per enzyme subunit. Conditions for exchange of the four catalytically essential zinc atoms with 65Zn have been developed. These atoms exchange identically under all conditions examined. The resultant radiolabeled enzyme, l(YADH)65Zn4], has the same metal content, specific enzymatic activity, and coenzyme binding properties as the native enzyme. The 65Zn of this enzyme serves to monitor the extent and site specificity of cobalt replacement. The fully cobalt-substituted enzyme, [(YADH)Co4], has a specific activity of 80 U/mg, 17% that of the Zn enzyme, and exhibits absorption and circular dichroic spectra which are consistent with coordination by one or more sulfur ligands in a distorted tetrahedral geometry.  相似文献   

6.
Native carboxypeptidase B and its Co2+-substituted derivative were oxidized by the active-site-directed agent m-chloroperbenzoic acid. The following results were obtained a) In the cobalt enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Peptide or ester pseudo-substrates protected the cobalt enzyme but not the zinc enzyme against inactivation. b) Upon oxidation and formation of Co3+, cleavage of peptide bonds occurred in the cobalt enzyme but not in the zinc enzyme. Both enzymes retained their original metal content. c) Following oxidation of the enzymes, amino acid analysis revealed a modification of a methionyl residue in the zinc enzyme only; the cobalt enzyme, on the other hand, showed a modification of a histidyl residue. d) Peptide mapping of the enzymes after cleavage by cyanogen bromide indicated that two methionyl peptides were missing in the oxidized zinc enzyme. These peptides point to Met-64 as the site of modification. The peptide map of the oxidized cobalt enzyme was similar to that of the unmodified native (i.e., zinc) enzyme. These studies indicate that the specific metal ion present in the enzyme imposes certain structural and functional differences on the active site, leading to differing reactivities of specific amino acid residues and to a different alignment of the active-site-directed reagent in the two enzymes.  相似文献   

7.
Enzyme elements that are involved in the reversible cyclization of L-carbamylaspartate to L-dihdroorotate catalyzed by dihydroorotase (EC 3.5.2.3) from Clostridium oroticum (ATCC 25750) have been studied. Removal of Zn(II) from the enzyme by chelators followed by incubation of apoenzyme with Co(II) results in replacement of two to three of the four Zn(II) ions per molecule by Co(II). The catalytic properties of the Zn(II)Co(II) dihydroorotase are different from those of native enzyme. The Vmax is increased for both the synthesis and hydrolysis of L-dihydroorotate. The Km for L-dihydroorotate is unchanged, while the Km for L-carbamylaspartate is increased more than twofold. On the other hand, the kinetic properties of Zn(II)-reconstituted dihydroorotase are indistinguishable from those of native enzyme. The pH dependence of Vmax is also altered by the Co(II) substitution. For both Zn(II)- and Zn(II)Co(II)-dihydroorotase, this pH dependence is well described by a single ionization and the pK's for L-dihydroorotate synthesis and hydrolysis are different. Substitution with Co(II) increases the pK for both reaction directions to different extents. These results strongly support a role for the tightly bound metals in the catalytic mechanism. In addition, diethylpyrocarbonate rapidly inactivates the enzyme. The inactivation is prevented by L-dihydroorotate. This result is consistent with a role for at least one histidine in catalysis. The possibility that C. oroticum dihydroorotase may be useful model for the more complex mammalian enzyme is considered.  相似文献   

8.
The X-ray structure of a mutant version of Escherichia coli alkaline phosphatase (H412N) in which His-412 was replaced by Asn has been determined at both low (-Zn) and high (+Zn) concentrations of zinc. In the wild-type structure, His-412 is a direct ligand to one of the two catalytically critical zinc atoms (Zn1) in the active site. Characterization of the H412N enzyme in solution revealed that the mutant enzyme required high concentrations of zinc for maximal activity and for high substrate and phosphate affinity (Ma L, Kantrowitz ER, 1994, J Biol Chem 269:31614-31619). The H412N enzyme was also inhibited by Tris, in contrast to the wild-type enzyme, which is activated more than twofold by 1 M Tris. To understand these kinetic properties at the molecular level, the structure of the H412N (+Zn) enzyme was refined to an R-factor of 0.174 at 2.2 A resolution, and the structure of the H412N(-Zn) enzyme was refined to an R-factor of 0.166 at a resolution of 2.6 A. Both indicated that the Asn residue substituted for His-412 did not coordinate well to Zn1. In the H412N(-Zn) structure, the Zn1 site had very low occupancy and the phosphate was shifted by 1.8 A from its position in the wild-type structure. The Mg binding site was also affected by the substitution of Asn for His-412. Both structures of the H412N enzyme also revealed a surface-accessible cavity near the Zn1 site that may serve as a binding site for Tris.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Apoenzyme prepared by removal of the 2 mol of Zn2+/mol from Aeromonas aminopeptidase is inactive. Addition of Zn2+ reactivates it completely, and reconstitution with Co2+, Ni2+, or Cu2+ results in a 5.0-, 9.8-, and 10-fold more active enzyme than native aminopeptidase, respectively. Equilibrium dialysis and spectral titration experiments with Co2+ confirm the stoichiometry of 2 mol of metal/mol. The addition of only 1 mol of metal/mol completely restores activity characteristic of the particular metal. Interaction between the two sites, however, causes hyperactivation; thus, addition of 1 mol of Zn2+/mol subsequent to 1 mol of Co2+, Ni2+, or Cu2+ per mole increases activity 3.2-, 42-, or 59-fold, respectively. The cobalt absorption spectrum has a peak of 527 nm with a molar absorptivity of 53 M-1 cm-1 for 1 mol of cobalt/mol, which increases to 82 M-1 cm-1 for a second cobalt atom and is unchanged by further addition of Co2+. Circular dichroic (CD) and magnetic CD spectra indicate that the first Co2+ binding site is tetrahedral-like and that the second is octahedral-like. Stoichiometric quantities of 1-butylboronic acid, a transition-state analogue inhibitor of the enzyme [Baker, J. O., & Prescott, J. M. (1983) Biochemistry 22, 5322], profoundly affects absorption, CD, and MCD spectra, but n-valeramide, a substrate analogue inhibitor, has no effect. These findings suggest that the tetrahedral-like site is catalytic and the other octahedral-like site is regulatory or structural.  相似文献   

10.
Carbonic anhydrase (CA) enzyme was purified from rainbow trout brain by Sepharose-4B-L: -tyrosine-sulfanilamide affinity chromatography. The enzyme was obtained with a specific activity of 2,275 EU mg(-1) and a yield of 22.5%. The sample obtained from the affinity column was used for kinetic properties and inhibition studies. Both optimum and stable pH were found as 9.0 in 1 M Tris-SO(4) at 4 degrees C, respectively. To check the purity and subunit molecular weight of enzyme, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis was performed, and MW was found as approximately 29.0 kDa. The molecular weight of native enzyme was estimated to be approximately 27.3 kDa by gel filtration chromatography. The purified enzyme had apparent K (m),V (max), and k (cat) as follows: 0.92 mM, 0.207 micromol.min(-1) and 43.6 s(-1) for p-nitrophenylacetate. The inhibitory effects of Co(II), Cu(II), Zn(II), Ag(I), and Cd(II) on CA enzyme activity were determined using the esterase method under in vitro conditions at low concentrations of the corresponding metals. The obtained IC(50) values, which cause 50% inhibition on in vitro enzyme activity, were 0.05, 30, 0.31, 159, and 82.5 mM for cobalt, copper, zinc, silver, and cadmium, respectively. K ( i ) values were also calculated from Linewaever-Burk plots for these substances as 0.014, 27.68, 2.15, 193.86, and 94.18 for cobalt, copper, zinc, silver, and cadmium, respectively; it was determined that cobalt, silver and cadmium inhibited the enzyme competitively, copper inhibited noncompetitively while zinc inhibited the enzyme uncompetitively.  相似文献   

11.
A J Sytkowski  B L Vallee 《Biochemistry》1978,17(14):2850-2857
The preparation of metal hybrid species of horse liver alcohol dehydrogenase is made possible by the development of carefully delineated systems of metal in equilibrium metal exchange employing equilibrium dialysis. The conditions which are optimal for the site-specific replacement of the catalytic and/or noncatalytic zinc atoms of the native enzyme by cobalt are not identical with those which are utilized for substitution with 65Zn. Thus, while certain 65Zn hybrids can be prepared by exploiting the differential effects of buffer anions, the cobalt hybrids are generated by critical adjustments in the pH of the dialysate. Factors which may determine the mechanism of metal replacement reactions include acid-assisted, ligand-assisted, and metal-assisted dechelation, steric restriction, and ligand denticity as well as physicochemical properties of the enzyme itself. The spectral characteristics of the catalytic and noncatalytic cobalt atoms reflect both the geometry of the coordination complexes and the nature of the ligands and serve as sensitive probes of these loci in the enzyme.  相似文献   

12.
The binding of four inhibitors--mercuric ion, 3-acetoxymercuri-4-aminobenzenesulfonamide (AMS), acetazolamide (Diamox), and thiocyanate ion--to human carbonic anhydrase II (HCA II) has been studied with X-ray crystallography. The binding of mercury to HCA II at pH 7.0 has been investigated at 3.1 A resolution. Mercuric ions are observed at both nitrogens in the His-64 ring. One of these sites is pointing toward the zinc ion. The only other binding site for mercury is at Cys-206. The binding of the two sulfonamide inhibitors AMS and Diamox, has been reinvestigated at 2.0 and 3.0 A, respectively. Only the nitrogen of the sulfonamide group binds to the zinc ion replacing the hydroxyl ion. The sulfonamide oxygen closest to the zinc ion is 3.1 A away. Thus the tetrahedral geometry of the zinc is retained, refuting earlier models of a pentacoordinated zinc. The structure of the thiocyanate complex has been investigated at pH 8.5 and the structure has been refined at 1.9 A resolution using the least-squares refinement program PROLSQ. The crystallographic R factor is 17.6%. The zinc ion is pentacoordinated with the anion as well as a water molecule bound in addition to the three histidine residues. The nitrogen atom of the SCN- ion is 1.9 A from the zinc ion but shifted 1.3 A with respect to the hydroxyl ion in the native structure and at van der Waals' distance from the O gamma l atom of Thr-199. This is due to the inability of the O gamma l atom of Thr-199 to serve as a hydrogen bond donor, thus repelling the nonprotonated nitrogen. The SCN- molecule reaches into the deep end of the active site cavity where the sulfur atom has displaced the so-called "deep" water molecule of the native enzyme. The zinc-bound water molecule is 2.2 A from the zinc ion and 2.4 A from the SCN- nitrogen. In addition, this water is hydrogen bonded to the O gamma l atom of Thr-199 and to another water molecule. We have observed that solvent and inhibitor molecules have three possible binding sites on the zinc ion and their significance for the catalysis and inhibition of HCA II will be discussed. All available crystallographic data are consistent with a proposed catalytic mechanism in which both the OH moiety and one oxygen of the substrate HCO3- ion are ligated to the zinc ion.  相似文献   

13.
Metallo-beta-lactamases are native zinc enzymes that catalyse the hydrolysis of beta-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted beta-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pK(a) 6.52+/-0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some beta-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.  相似文献   

14.
Reversible 2,6-dihydroxybenzoate decarboxylase from Rhizobium sp. strain MTP-10005 belongs to a nonoxidative decarboxylase family. We have determined the structures of the following three forms of the enzyme: the native form, the complex with the true substrate (2,6-dihydroxybenzoate), and the complex with 2,3-dihydroxybenzaldehyde at 1.7-, 1.9-, and 1.7-A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of one (alphabeta)8 triose-phosphate isomerase-barrel domain with three functional linkers and one C-terminal tail. The native enzyme possesses one Zn2+ ion liganded by Glu8, His10, His164, Asp287, and a water molecule at the active site center, although the enzyme has been reported to require no cofactor for its catalysis. The substrate carboxylate takes the place of the water molecule and is coordinated to the Zn2+ ion. The 2-hydroxy group of the substrate is hydrogen-bonded to Asp287, which forms a triad together with His218 and Glu221 and is assumed to be the catalytic base. On the basis of the geometrical consideration, substrate specificity is uncovered, and the catalytic mechanism is proposed for the novel Zn2+-dependent decarboxylation.  相似文献   

15.
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approximately 155 kDa. The catalytic activity of the enzyme increases up to 100 degrees C, and a half-life of 11 min at this temperature indicates its thermostability. The enzyme is specific for NAD(H), and maximal specific activities were detected with L-threonine (10.3 U x mg(-1)) and acetoin (3.9 U x mg(-1)) in the oxidative and reductive reactions, respectively. Pf-TDH also utilizes L-serine and D-threonine as substrate, but could not oxidize other L-amino acids. The enzyme requires bivalent cations such as Zn2+ and Co2+ for activity and contains at least one zinc atom per subunit. Km values for L-threonine and NAD+ at 70 degrees C were 1.5 mm and 0.055 mm, respectively.  相似文献   

16.
Substitution of the two rapidly exchanging zinc atoms of liver alcohol dehydrogenase by cobalt is biphasic; replacement by the first cobalt occurs at a rate (t12 = 15 minutes) approximately ten times faster than substitution by the second cobalt atom. The hybrid enzyme containing one gram atom of cobalt has a characteristic visible absorption spectrum which is not perturbed by NADH or 1,10-phenanthroline. The fluorescence of NADH or ε-NAD bound to the hybrid is not quenched. These data indicate a previously unrecognized heterogeneity in the rapidly exchanging zinc atoms; one of the exchange labile zinc atoms is located at a structural metal binding site rather than an active site.  相似文献   

17.
Exposure of cobalt (II) carboxypeptidase Aα, [(CPD)Co(II)], to small molar excesses of the oxidizing agent m-chloroperbenzoate rapidly destroys (< 30 sec) both its peptidase and esterase activities in parallel. Concomitantly, the characteristic Co(II) electron paramagentic resonance (EPR) signal is abolished. [(CPD)Co(III)], isolated from the reaction mixture, has the same molecular weight and amino acid composition as [(CPD)Co(II)], contains 0.95 g-atom of Co and 0.01 g-atom of Zn per mole of protein, does not exhibit an EPR spectrum and is catalytically completely inactive towards both peptide and ester substrates. Identical treatment of the native zinc enzyme affects neither its catalytic activity nor its metal content. The reaction of m-chloroperbenzoate with [(CPD)Co(II)] follows saturation kinetics and is prevented by the inhibitor β-phenylpropionate. Furthermore, under the conditions found to oxidize [(CPD)Co(II)] effectively, there is no reaction with Co(II) E. coli alkaline phosphatase. Thus, m-chloroperbenzoate has the characteristics of an active-site directed oxidizing reagent for [(CPD)Co(II)].  相似文献   

18.
Modification of the carboxylate groups of purified S1 nuclease resulted in a loss of its single-stranded DNAase, RNAase and phosphomonoesterase activities. The inactivation was due to the removal of zinc atoms from the enzyme and this in turn was dependent on the degree of modification. While the removal of one zinc atom resulted in the partial inactivation of the enzyme, removal of the remaining zinc atoms resulted in the complete inactivation of the enzyme. Similar results were obtained when the purified enzyme was incubated with various concentrations of the metal chelator, EDTA. The EDTA-(1 mM)-treated enzyme, depleted of one zinc atom, showing 40-45% residual activity, when incubated with 1 mM Zn2+ or 1 mM Co2+, regained a significant amount of its initial activity towards all the substrates. However, Woodward's-Reagent-K-modified enzyme depleted of one zinc atom and having the same level of activity (40-45%) could not regain its activity, indicating that the carboxylate groups are involved in the metal binding. Data obtained with carboxylate-group modification, EDTA-treatment, reconstitution with metal ions, zinc estimation and CD analysis of the enzyme suggests that, out of three zinc atoms present in S1 nuclease, zinc I is easily replaceable and is probably involved in the catalytic activity while zinc II and zinc III are involved in maintaining the enzyme structure.  相似文献   

19.
Native and trypsin-modified methionyl-tRNA synthetases from Escherichia coli were found to be inactivated by incubation in the presence of Co(III) complexes of ATP, stabilized either by imidazole or phenanthroline, or by oxidation in situ to Co(III) of the substrate ATP-Co(II). It has been shown that the inactivation proceeds by specific labeling of the catalytic ATP-Mg(II) site of the synthetases. The enzymes are completely inactivated by the incorporation of one cobalt atom and one ATP molecule per active site. The inactivated enzymes may be stored for a long period without significant reactivation or removal of the cobalt label. In the presence of dithiothreitol or 2-mercaptoethanol, the labeled enzymes recover full activity with concomittant release of the bound label molecules.  相似文献   

20.
We have previously provided evidence for a dinuclear zinc site in rabbit skeletal muscle AMPD compatible with a (micro-aqua)(micro-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site. XAS of the zinc binding site of the enzyme in the presence of PRN favors a model where PRN is added to the coordination sphere of one of the two zinc ions increasing its coordination number to five. The uncompetitive nature of the inhibition of AMPD by fluoride reveals that the anion probably displaces the nucleophile water molecule terminally coordinated to the catalytic Zn(1) ion at the enzyme C-terminus, following the binding of AMP at the Zn(2) ion located at N-terminus of the enzyme. Thus, the two Zn ions in the AMPD metallocenter operate together as a single catalytic unit, but have independent function, one of them (Zn(1)) acting to polarize the nucleophile water molecule, whilst the other (Zn(2)) acts transiently as a receptor for an activating substrate molecule. The addition of fluoride to AMPD also abolishes the cooperative behaviour induced in the enzyme by the inhibitory effect of ATP at acidic pH that probably resides in the competition with the substrate for an adenine nucleotide specific regulatory site located in the Zn(2) ion binding region and which is responsible for the positive homotropic cooperativity behaviour of AMPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号