首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acylgalactosylceramides (AGC) from forebrains of normal and dysmyelinating (quaking and shiverer) mice were purified by Florisil column chromatography and preparative TLC. These procedures resolved the AGC on the basis of their Rf values into two main fractions which co-nigrate with their homologs from rat forebrains. In control animals, AGC were detectable in mouse forebrains from the eighth postnatal day and reached maximal values within 20 days. The same developmental pattern was obtained in dysmyelinating shiverer mice but the AGC content was reduced to approximately 30% of control values. In quaking mutants, the AGC were hardly detected. They were also present in sciatic nerve of normal mice and to a lesser extent in trembler mice. Gas chromatography-mass spectrometry analysis of both ester- and amide-linked fatty acids isolated from AGC of normal and shiverer mice shows that the shiverer mutant AGC display a chemical structure similar to that of normal AGC. AGC constituents of control myelin are reduced by approximately 70% in shiverer myelin, indicating that these molecules can be considered as early markers of oligodendrocyte differentiation. The early arrest of myelinogenesis in the quaking animals and the near absence of AGC are in good agreement with this proposal. Moreover, the reduced amount of AGC in the trembler PNS indicates that AGC could also be early markers for differentiation of the Schwann cell.  相似文献   

2.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

3.
Ganglioside compositions in the brains of the mutant mice quaking and shiverer were compared with those of their littermate controls, C57BL/6 and C3HSWV. Neither ganglioside content nor composition of shiverer brains differed from those of the control brains. Change in the ganglioside composition of the mutant brain from that of the control was observed only in the quaking mutant brain, in which monosialoganglioside GM1 was significantly reduced and GM4 was completely absent. The structures of the gangliosides were determined by negative ion fast atom bombardment mass spectrometry, and the GM3 and GM4 gangliosides in the quaking brain were found to be altered in regard to their long-chain base and fatty acid compositions when compared to the normal C57BL/6 brain.  相似文献   

4.
Abstract: 5'Nucleotidase and Na+,K+-ATPase are very probably myelin-associated enzymes, although not specific for this membrane. Thus, it is important to determine their activity in dysmyelinating mutants in either CNS (quaking, jimpy, shiverer, and mld) or PNS (Trembler). CNS: The activity of 5'nucleotidase was lower in mouse than in rat (10.5 and 28.0 nmol/min/mg protein in brain, respectively). In mouse myelin, the activity was 30 nmol/min/mg protein (and 72 in rat myelin). In mutants, the brain activity was very close to normal. In contrast, ATPase, the activity of which was higher in myelin as compared with forebrain homogenate, presented a reduced activity in various 21-day-old and adult mutants, except Trembler. It was normal in 8-day-old quaking and in cerebella from mutants. PNS: ATPase was lower than in brain and reduced in most mutants, this being expected for Trembler and quaking but not for shiverer and mld. 5'-Nucleotidase activity was higher compared with that in brain homogenate (relatively stable between 10-day postnatal and adult). It was affected in the mutants; in Trembler it was nearly normal in young animals but increased during development. Thus in Trembler, two different myelin-related enzymes and a myelin-specific enzyme (CNPase) presented different developmental patterns: ATPase was always reduced, 5'-nucleotidase was normal, and CNPase was slightly below normal in young (68% of the control value); CNPase activity declined during development but 5'-nucleotidase increased (42% and 190% of the control in 60-day-old animals). It is necessary to consider these results in parallel with alterations in the PNS because of Schwann cell abnormalities. Thus, determination of these two enzymes will provide a useful tool to study myelination and myelin assembly under both normal and pathological conditions.  相似文献   

5.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

6.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

7.
Developmental changes in three enzymes associated with myelin lipids were studied in the shiverer mouse, a murine mutant showing a severe deficiency of CNS myelin. Age-related changes in cerebroside sulfotransferase (measured in brain) and arylsulfatase A and cerebroside B-galactosidase (measured in brain and liver) were the same for shiverer and control mice. The shiverer mouse, therefore, demonstrates a dissociation between the genetic mechanisms regulating myelination in the CNS and developmental changes in enzyme activities thought to be closely related to the synthesis of myelin. In addition, we found no defect in the shiverer mouse in the incorporation of glycine-labeled basic protein into CNS myelin, indicating an important metabolic difference between the morphologically similar shiverer and quaking mutants.  相似文献   

8.
X-ray diffraction patterns were obtained from freshly dissected central and peripheral nerves of quaking, myelin synthesis deficiency (msd), and trembler mutants, as well as immature and adult normal mice. The patterns were compared with respect to strength of myelin diffraction, background scatter level, repeat period, and intensity and linewidth of Bragg reflections. The deficiency of myelin in optic nerves was found to be (in decreasing severity): quaking > immature > trembler ? normal adult; and in sciatic nerves: trembler > immature > quaking msd ? normal adult. Repeat periods about 3 Å less than that for normal adult sciatic myelin were detected in corresponding nerves from immature, quaking, and trembler mice. In some trembler sciatic nerves a second phase having a 190–200 Å period and accounting for about 60% of the total ordered myelin was also evident. Comparison of electron density profiles of membrane units calculated from the repeat periods and diffracted intensities for sciatic myelins indicate structural differences at the molecular level. The main findings are: (1) quaking myelin shows a significant elevation of density in the external protein-water layer between membrane bilayers; (2) the membrane bilayer of immature myelin is ≈ 2 Å thinner than that for normal adult; (3) the membrane bilayer of the more compact phase in trembler myelin is ≈ 5 Å thinner than for normal; and (4) the difference in repeat periods for the two phases present in some of the trembler nerves can be accounted for predominantly by distinct membrane bilayer separations at the external boundary.  相似文献   

9.
The spin labels, 5-nitroxide stearic acid and 16-nitroxide stearic acid were incorporated into whole sciatic nerves dissected from normal, quaking, jimpy and trembler mice. With 5-nitroxide stearic acid, we have studied the thermal variation of the maximal apparent coupling constant (T) between 0 degrees C and 50 degrees C. Within this range of temperatures, we obtained identical values of 2 T for nerves from normal and jimpy mice, whereas 2 T was smaller for nerves from quaking and trembler mice. With 16-nitroxide stearic acid, composite spectra were recorded, particularly in the high-field range. A line characteristic of myelin was clearly observed in the spectra of nerves from normal and jimpy mice; its intensity was somewhat less in nerves from quaking mice and much less in spectra from trembler mice. A shoulder in the principal highfield line of the spectrum is modified only with nerves from jimpy mice. The results agree well with those obtained by electron microscopy, which reveal normal myelination in nerves from jimpy mice, a slight modification of the myelin from those of quaking mice and a practically complete demyelination in peripheral nerves from trembler mice. However, the structure of the nerves of jimpy mice also seems to be modified at an, as yet, undetermined level.  相似文献   

10.
Here, we identify ADP-ribosylation factor (ARF)-like 7 (ARL7) as the only ARF- and ARL-family member whose mRNA-expression is induced by liver X-receptor/retinoid X-receptor agonists or cholesterol loading in human macrophages. Moreover, subcellular distribution of mutant and wild type ARL7-enhanced green fluorescent protein (EGFP) supports that ARL7 may be involved in a vesicular transport step between a perinuclear compartment and the plasma membrane. Therefore, we investigated the effect of ARL7 over-expression on the cholesterol secretory pathway. We found that expression of wild type and dominant active ARL7-EGFP stimulated the rate of apolipoprotein AI-specific cholesterol efflux 1.7- and 2.8-fold. In contrast, expression of the dominant negative form of ARL7-EGFP led to approximately 50% inhibition of cholesterol efflux. This data is consistent with a model in which ARL7 is involved in transport between a perinuclear compartment and the plasma membrane apparently linked to the ABCA1-mediated cholesterol secretion pathway.  相似文献   

11.
Cholesterol elimination from the body involves reverse cholesterol transport from peripheral tissues in which the elimination of high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol by the liver and subsequent biliary excretion as free cholesterol and bile acids are important. In situations of peripheral fat and cholesterol accumulation, such as obesity, these pathways may be overloaded, contributing to increased cholesterol deposition. Leptin has an important role in obesity, suppressing food intake and increasing energy expenditure. This hormone, which is absent in genetically obese ob/ob mice, is also thought to be involved in the coordination of lipid excretion pathways, although available data are somewhat inconsistent. We therefore studied the expression of the hepatic HDL receptor, scavenger receptor class B type I (SR-BI), and the LDL receptor as well as the rate-limiting enzyme in bile acid synthesis, cholesterol 7alpha-hydroxylase (Cyp7a1), in leptin-deficient ob/ob mice and their wild-type controls. In ob/ob mice, protein levels of both LDL receptor and SR-BI were reduced, whereas LDL receptor mRNA levels were increased and those of SR-BI were reduced, regardless of challenge with a 2% cholesterol diet. In ob/ob mice, the enzymatic activity and mRNA for Cyp7a1 were reduced, and the increase in response to dietary cholesterol was blunted. Upon short-term (2 days) treatment with leptin, a dose-dependent increase was seen in the SR-BI protein and mRNA, whereas the Cyp7a1 protein and mRNA were reduced. Our findings indicate that leptin is an important regulator of hepatic SR-BI expression and, thus, HDL cholesterol levels, whereas it does not stimulate Cyp7a1 and bile acid synthesis.  相似文献   

12.
Monospecific antibody against purified rat liver cholesterol 7 alpha-hydroxylase cytochrome P-450 was used to screen a lambda gt11 cDNA library constructed from immuno-enriched polysomal RNA of cholestyramine-treated female rat liver. Two types of cDNA clones differing in the length of the 3'-untranslated region were identified, and DNA sequences were determined. The full length clone contains 3561 base pairs plus a long poly(A) tail. The amino acid sequence deduced from the open reading frame revealed a unique P-450 protein containing 503 amino acid residues which belonged to a new gene family designated family VII or CYP7. Southern blot hybridization experiments indicated that the minimal size of P-450 VII gene was 11 kilobase pairs (kb), and there was probably only one gene in this new family. Northern blot hybridization using specific cDNA probes revealed at least two major mRNA species of about 4.0 kb and 2.1 kb, respectively. These two mRNA species may be derived from the use of different polyadenylation signals and reverse-transcribed to two types of cDNA clones. Cholesterol 7 alpha-hydroxylase mRNAs were induced 2- to 3-fold in rat liver by cholestyramine treatment. The mRNA level was rapidly reduced upon the removal of the inducer. Similarly, cholesterol feeding induced enzyme activity, protein, and mRNA levels in the rat by 2-fold, suggesting that cholesterol is an important regulator of cholesterol 7 alpha-hydroxylase in the liver. On the other hand, dexamethasone and pregnenolone-16 alpha-carbonitrile drastically reduced the activity, protein, and mRNA levels. These experiments suggest that the induction of cholesterol 7 alpha-hydroxylase activity by cholestyramine or cholesterol and inhibition of cholesterol 7 alpha-hydroxylase activity by bile acid feedback are results of the rapid turnover of cholesterol 7 alpha-hydroxylase enzyme and mRNA levels.  相似文献   

13.
The spin labels, 5-nitroxide stearic acid and 16-nitroxide stearic acid were incorporated into whole sciatic nerves dissected from normal, quaking, jimpy and trembler mice. With 5-nitroxide stearic acid, we have studied the thermal variation of the maximal apparent coupling constant (T6) between 0°C and 50°C. Within this range of temperatures, we obtained identical values of 2 T6 for nerves from normal and jimpy mice, whereas 2 T6 was smaller for nerves from quaking and trembler mice. With 16-nitroxide stearic acid, composite spectra were recorded, particularly in the high-field range. A line characteristic of myelin was clearly observed in the spectra of nerves from normal and jimpy mice; its intensity was somewhat less in nerves from quaking mice and much less in spectra from trembler mice. A shoulder in the principal highfield line of the spectrum is modified only with nerves from jimpy mice.The results agree well with those obtained by electron microscopy, which reveal normal myelination in nerves from jimpy mice, a slight modification of the myelin from those of quaking mice and a practically complete demyelination in peripheral nerves from trembler mice. However, the structure of the nerves of jimpy mice also seems to be modified at an, as yet, undetermined level.  相似文献   

14.
The myelin-associated glycoprotein (MAG) was quantitated in the CNS and PNS of quaking mice and the levels compared to the levels of myelin basic protein (MBP) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity. In the brainstems of 36-day-old quaking mice, MBP, MAG, and CNPase were reduced to 12, 16, and 29% of control levels, respectively. In the sciatic nerves of the 36-day-old quaking mice, MBP and CNPase were 38 and 75% of control levels, respectively, whereas the concentration of MAG was unchanged or slightly increased. Similar quantitative results were obtained for the sciatic nerves and spinal roots of 7-month-old quaking mice. Immunoblots showed that the principal MAG band from the brainstems, sciatic nerves, and spinal roots of the quaking mice had a higher than normal apparent Mr. In addition, there was a minor component reacting with anti-MAG antiserum in the brainstems of the quaking mice that had a slightly lower Mr than control MAG and was not detected in the normal mice. The results for the quaking mice are compared with those from similar studies on other mutants with dysmyelination of the CNS and PNS.  相似文献   

15.
Two cholesterol 7 alpha-hydroxylase isozymes were purified from liver microsomes of cholestyramine-treated female rats by using anion exchange high performance liquid chromatography. These two cytochrome P-450 isozymes were similar in electrophoretic mobility, immunocross-reactivity, and Vmax but differed in Km for cholesterol, turnover number, and charges. Antibody against the major isozyme was raised in rabbit. This antibody specifically inhibited microsomal cholesterol 7 alpha-hydroxylase activity. Immunoblot of microsomal polypeptides indicated that microsomal cholesterol 7 alpha-hydroxylase enzyme levels were increased in parallel with cholesterol 7 alpha-hydroxylase activity upon the treatment of rats with diet supplemented with cholestyramine. Both cholesterol 7 alpha-hydroxylase activity and enzyme levels were drastically reduced immediately after the removal of cholestyramine from the diet. Cholesterol 7 alpha-hydroxylase activity was also detected in the microsomes of kidney, heart, and lung in about 7-27% of the level found in the liver. 3-Methylcholanthrene treatment induced cholesterol 7 alpha-hydroxylase activity and enzyme level. In contrast, pregnenolone-16 alpha-carbonitrile or dexamethasone treatment greatly depressed enzyme and activity in rats. Cholesterol 7 alpha-hydroxylase enzyme level was 2-3-fold higher in liver microsomes of rats maintained under the reversed light cycle than under the normal light cycle. In genetically obese Zucker rats, cholesterol 7 alpha-hydroxylase activity and enzyme level did not respond to the change in the light cycle, however, were induced to the same levels as in the lean rats by cholestyramine treatment. This study provided the first direct evidence that the bile acid feedback regulation and circadian rhythm of microsomal cholesterol 7 alpha-hydroxylase activity involved the induction of cholesterol 7 alpha-hydroxylase enzyme level.  相似文献   

16.
17.
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.  相似文献   

18.
In vitro studies have demonstrated that ZNT7 is involved in transporting the cytoplasmic zinc into the Golgi apparatus of the cell for zinc storage or to be incorporated into newly synthesized zinc-requiring enzymes/proteins. To evaluate the physiological role of ZNT7, we created a mouse model of Znt7 deficiency by a gene-trap approach. Znt7-deficient mice were zinc-deficient based on their low zinc content in serum, liver, bone, kidney, and small intestine. In embryonic fibroblasts isolated from Znt7-deficient mice, cellular zinc was approximately 50% that of wild-type controls. Znt7-deficient mice also displayed some classic manifestations of dietary zinc deficiency, such as reduced food intake and poor body weight gain. However, the mutant mice did not show any sign of hair abnormality and dermatitis that are commonly associated with dietary zinc deficiency. A radioactive feeding study suggested that Znt7-deficient mice had reduced zinc absorption in the gut resulting in decreased zinc accumulations in other organs in the body. The poor growth found in Znt7-deficient mice could not be corrected by feeding the mutant mice with a diet containing 6-fold higher zinc (180 mg/kg) than the suggested adequate intake amount (30 mg/kg). Furthermore, the reduced body weight gain of the mutant mice was largely due to the decrease in body fat accumulation. We conclude that ZNT7 has essential functions in dietary zinc absorption and in regulation of body adiposity.  相似文献   

19.
20.
Abstract: We studied the regulation of oleic acid synthesis in the PNS. During mouse postnatal development, the proportion of 18:1 rises in the sciatic nerve from 17% at 5 days of age to 33% at 25 days. However, this rise does not occur in the dysmyelinating mutant mouse trembler. In normal mouse development, the total stearoyl-CoA desaturase (SCD) activity measured in sciatic nerve homogenates is high during the first 3 weeks. Yet in trembler nerves, this SCD activity represents only 15% of normal values. Using the RT-PCR technique, we demonstrate that the SCD2 isoform is predominantly expressed in the PNS. Northern blot analysis showed that the mRNA levels for SCD2 parallel those of other specific myelin proteins in both normal mouse and trembler mutant development. Similar experiments in a rat demyelination-remyelination model confirmed that SCD2 mRNA levels are regulated in the PNS in a similar manner to myelin-specific proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号