首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobically induced NAD-linked glycerol dehydrogenase of Klebsiella pneumoniae for fermentative glycerol utilization was reported previously to be inactivated in the cell during oxidative metabolism. In vitro inactivation was observed in this study by incubating the purified enzyme in the presence of O2, Fe2+, and ascorbate or dihydroxyfumarate. It appears that O2 and the reducing agent formed H2O2 and that H2O2 reacted with Fe2+ to generate an activated species of oxygen which attacked the enzyme. The in vitro-oxidized enzyme, like the in vivo-inactivated enzyme, showed an increased Km for NAD (but not glycerol) and could no longer be activated by Mn2+ which increased the Vmax of the native enzyme but decreased its apparent affinity for NAD. Ethanol dehydrogenase and 1,3-propanediol oxidoreductase, two enzymes with anaerobic function, also lost activity when the cells were incubated aerobically with glucose. However, glucose 6-phosphate dehydrogenase (NADP-linked), isocitrate dehydrogenase, and malate dehydrogenase, expected to function both aerobically and anaerobically, were not inactivated. Thus, oxidative modification of proteins in vivo might provide a mechanism for regulating the activities of some anaerobic enzymes.  相似文献   

2.
In the cofermentation of glycerol with a sugar by Lactobacillus brevis and Lactobacillus buchneri, a 1,3-propanediol:NAD+ oxidoreductase provides an additional method of NADH disposal. The enzyme has been purified from both L. brevis B22 and L. buchneri B190 and found to have properties very similar to those reported for the enzyme from Klebsiella pneumoniae. The enzymes required Mn2+ and are probably octamers with a molecular mass of 350 kDa. Although not absolutely specific for 1,3-propanediol when tested as dehydrogenases, the enzymes have less than 10% activity with glycerol, ethanol, and 1,2-propanediol. These properties contrast sharply with those of a protein isolated from another Lactobacillus species (L. reuteri) that ferments glycerol with glucose and previously designated a 1,3-propanediol dehydrogenase.  相似文献   

3.
In the cofermentation of glycerol with a sugar by Lactobacillus brevis and Lactobacillus buchneri, a 1,3-propanediol:NAD+ oxidoreductase provides an additional method of NADH disposal. The enzyme has been purified from both L. brevis B22 and L. buchneri B190 and found to have properties very similar to those reported for the enzyme from Klebsiella pneumoniae. The enzymes required Mn2+ and are probably octamers with a molecular mass of 350 kDa. Although not absolutely specific for 1,3-propanediol when tested as dehydrogenases, the enzymes have less than 10% activity with glycerol, ethanol, and 1,2-propanediol. These properties contrast sharply with those of a protein isolated from another Lactobacillus species (L. reuteri) that ferments glycerol with glucose and previously designated a 1,3-propanediol dehydrogenase.  相似文献   

4.
本研究主要对克雷伯杆菌甘油转化1,3-丙二醇代谢途径中的2个关键酶甘油脱氢酶(GDH)、1,3-丙二醇氧化还原酶(PDOR)反应机制和动力学进行了研究。首先,通过初速度和产物抑制动力学研究确定了GDH、PDOR双底物酶促反应机制为有序BiBi机制,明确了由反应物消耗到产物生成之间的历程。其次,建立了GDH、PDOR双底物酶促反应动力学模型,由动力学模型可知,在偶合反应中,如果GDH和PDOR酶量相同,GDH氧化反应成为限速反应,而辅酶I将主要以氧化型NAD+形式存在。动力学信息为酶法合成1,3-丙二醇和代谢工程研究提供理论指导。  相似文献   

5.
1,3-Propanediol oxidoreductase encoded by dhaT gene, a gene of 1,3-propanediol regulon, is important in converting glycerol to 1,3-propanediol in Klebsiella pneumoniae. DhaT gene was amplified from the genome of K. pneumoniae, sequenced and its amino acid sequence deduced. A predicted secondary structure and 3D-structural model was constructed by homology modelling. Based on these results, we infer that 1,3-propanediol oxidoreductase belongs to NAD(P)-dependent alcohol dehydrogenase group III of iron-activated dehydrogenases.  相似文献   

6.
The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering.  相似文献   

7.
I T Tong  H H Liao    D C Cameron 《Applied microbiology》1991,57(12):3541-3546
The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering.  相似文献   

8.
在5 L发酵罐进行甘油脉冲流加发酵,分析了不同pH值对克雷伯氏肺炎杆菌发酵特性的影响,pH 6.5为菌体最佳生长条件,克雷伯氏肺炎杆菌合成1,3-丙二醇的产量最高。在1,3-丙二醇合成速率较大的对数中前期,进行甘油脉冲流加发酵,提高甘油浓度促进甘油脱水酶、1,3-丙二醇氧化还原酶和甘油脱氢酶活性。不同pH值的脉冲试验表明,甘油脱水酶,2,3-丁二醇脱氢酶比酶活随着pH值的升高而升高,1,3-丙二醇氧化还原酶,乳酸脱氢酶比酶活在pH6.5最高,因此偏酸性的发酵条件和对数期维持一定的甘油浓度能够促进1,3-丙二醇的合成。  相似文献   

9.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

10.
The initial steps of glycerol dissimilation and 1,3-propanediol (1, 3-PD) formation by Klebsiella pneumoniae anaerobically grown on glycerol were studied by quantifying the in vitro and in vivo activities of enzymes in continuous culture under conditions of steady state and oscillation and during transient phases. The enzymes studied included glycerol dehydrogenase (GDH), glycerol dehydratase (GDHt), and 1,3-propanediol oxidoreductase (PDOR). Three conclusions can be drawn from the steady-state results. First, glycerol concentration in the culture is a key parameter that inversely affects the in vitro activities (concentrations) of all three enzymes, but has a positive effect on their in vivo activities. Growth rate significantly affects the ratio of in vitro and in vivo enzyme activities under low glycerol concentrations, but not under glycerol excess. Second, whereas the flux through the oxidative pathway of glycerol dissimilation is governed mainly by the regulation of in vivo enzyme activity on a metabolic level, the flux through the reductive pathway is largely controlled by the synthesis of enzymes. Third, GDHt is a major rate-liming enzyme for the consumption of glycerol and the formation of 1,3-PD in K. pneumoniae at high glycerol concentrations. Results from oscillating cultures revealed that both in vitro and in vivo activities of the enzymes oscillated. The average values of the in vitro activities during an oscillation cycle agreed well with their corresponding values for nonoscillating cultures under similar environmental conditions. Experiments with step changes in the feed concentration of glycerol demonstrated that growth and product formation are very sensitive to changes of substrate concentration in the culture. This sensitivity is due to the dynamic responses of the genetic and metabolic networks. They should be considered when modeling the dynamics of the culture and attempting to improve the formation of 1,3-PD.  相似文献   

11.
12.
Lactobacillus reuteri utilizes exogenously added glycerol as a hydrogen acceptor during carbohydrate fermentations, resulting in higher growth rates and cell yields than those obtained during growth on carbohydrates alone. Glycerol is first converted to 3-hydroxypropionaldehyde by a coenzyme B(12)-dependent glycerol dehydratase and then reduced to 1,3-propanediol by an NAD -dependent oxidoreductase. The latter enzyme was purified and determined to have a molecular weight of 180,000; it is predicted to exist as a tetramer of identical 42,000-molecular-weight subunits.  相似文献   

13.
1,3-Propanediol dehydrogenase (EC 1.1.1.202) was purified to homogeneity from Citrobacter freundii grown anaerobically on glycerol in continuous culture. The enzyme is an octamer of a polypeptide of 43,400 Da. When tested as a dehydrogenase, the enzyme was most active with substrates containing two primary alcohol groups separated by one or two carbon atoms. In the physiological direction, 3-hydroxypropionaldehyde was the preferred substrate. The apparent Km values of the enzyme for 3-hydroxypropionaldehyde and NADH were 140 and 33 microM, respectively. The enzyme was inhibited by chelators of divalent cations but could be reactivated by the addition of Fe2+. The dhaT gene, encoding the 1,3-propanediol dehydrogenase, was cloned, and its nucleotide sequence (1,164 bp) was determined. The deduced dhaT gene product (387 amino acids, 41,324 Da) showed a high level of similarity to a novel family (type III) of alcohol dehydrogenases. The dhaT gene was overexpressed in Escherichia coli 274-fold by using the T7 RNA polymerase/promoter system.  相似文献   

14.
Batch fermentation of glycerol to 1,3-propanediol (1,3PPD) by Enterobacter agglomerans CNCM 1210 showed the lethal accumulation of 3-hydroxypropionaldehyde (3-HPA) when performed under initial substrate content higher than 40 g/L. Assigned to the inhibition by the NAD/NADH ratio of the 3-HPA converting enzyme: 1,3PPD dehydrogenase, intracellular assays were conducted in an attempt to identify the metabolic mechanisms involved in the increase of that ratio. An overflow metabolism through the 1,3PPD formation pathway was established, while a catabolic limitation in the oxidative branch at the level of glyceraldehyde-3-phosphate dehydrogenase occurred. Uncoupled activities of synthesis and consumption of reducing equivalents are thus suspected to provoke the increase of the NAD/NADH ratio and the subsequent accumulation of 3-HPA. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

15.
Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431   总被引:3,自引:0,他引:3  
The levels of 1,3-propanediol dehydrogenase and of the glycerol dehydrogenase in Clostridium butyricum grown on glucose–glycerol mixtures were similar to those found in extracts of cells grown on glycerol alone, which can explain the simultaneous glucose–glycerol consumption. On glycerol, 43% of glycerol was oxidized to organic acids to obtain energy for growth and 57% to produce 1,3-propanediol. With glucose–glycerol mixtures, glucose catabolism was used by the cells to produce energy through the acetate–butyrate production and NADH, whereas glycerol was used chiefly in the utilization of the reducing power since 92–93% of the glycerol flow was converted through the 1,3-propanediol pathway. The apparent K ms for the glycerol dehydrogenase was 16-fold higher for the glycerol than that for the glyceraldehyde in the case of the glyceraldehyde-3-phosphate dehydrogenase and fourfold higher for the NAD+, providing an explanation for the shift of the glycerol flow toward 1,3-propanediol when cells were grown on glucose–glycerol mixtures.  相似文献   

16.
We report a Klebsiella pneumoniae DSM2026 fermentation procedure for the efficient production of a key enzyme of 1,3-propanediol formation: 1,3-propanediol oxidoreductase (E.C. 1.1.1.202). The fermentation process is composed of an aerobic batch phase on glucose and glycerol and an anaerobic phase on glycerol. The role of the aerobic phase is to produce sufficiently high cell mass (12.9–14.6 g/l dry weight) and to activate the aerobic branch of the Klebsiella glycerol pathway, whereas in the anaerobic phase there is a rapid initiation of 1,3-propanediol oxidoreductase formation. A fast change from an aerobic to an anaerobic environment led to a redox imbalance, which resulted in the abrupt activation of the anaerobic branch of glycerol utilization, with the occurrence of a high 1,3-propanediol-oxidoreductase activity. A mathematical model with substrate inhibition showed that the adequate glycerol concentration for enzyme production was 14–16 g/l. The combination of the optimal substrate concentration together with the subsequent use of glucose and glycerol resulted in 90.6 ± 11.6 U enzyme activity referred to 1 l of fermentation broth and 10.3 ± 0.9 U/(1 h) productivity.  相似文献   

17.
Sorbitol dehydrogenase (l-iditol:NAD(+) oxidoreductase, EC 1.1.1.14) has been detected and characterized from apple (Malus domestica cv. Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, xylitol, l-arabitol, ribitol, and l-threitol in the presence of NAD. NADP could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Other polyols that did not serve as substrate were galactitol, myo-inositol, d-arabitol, erythritol, and glycerol. The dehydrogenase oxidized NADH in the presence of d-fructose or l-sorbose. No detectable activity was observed with d-tagatose. NADPH could partially substitute for NADH.Maximum rate of NAD reduction in the presence of sorbitol occurred in tris(hydroxymethyl)aminomethane-HCl buffer (pH 9), or in 2-amino-2-methyl-1,3-propanediol buffer (pH 9.5). Maximum rates of NADH oxidation in the presence of fructose were observed between pH 5.7 and 7.0 with phosphate buffer. Reaction rates increased with increasing temperature up to 60 C. The K(m) for sorbitol and xylitol oxidation were 86 millimolar and 37 millimolar, respectively. The K(m) for fructose reduction was 1.5 molar.Sorbitol oxidation was completely inhibited by heavy metal ions, iodoacetate, p-chloromercuribenzoate, and cysteine. ZnSO(4) (0.25 millimolar) reversed the cysteine inhibition. It is suggested that apple sorbitol dehydrogenase contains sulfhydryl groups and requires a metal ion for full activity.  相似文献   

18.
Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, and 1,3-propanediol was produced. In order to compare the physiological behavior of the recombinant C. acetobutylicum DG1(pSPD5) strain with that of the natural 1,3-propanediol producer C. butyricum VPI 3266, both strains were grown in chemostat cultures with glycerol as the sole carbon source. The same "global behavior" was observed for both strains: 1,3-propanediol was the main fermentation product, and the qH2 flux was very low. However, when looking at key intracellular enzyme levels, significant differences were observed. Firstly, the pathway for glycerol oxidation was different: C. butyricum uses a glycerol dehydrogenase and a dihydroxyacetone kinase, while C. acetobutylicum uses a glycerol kinase and a glycerol-3-phosphate dehydrogenase. Secondly, the electron flow is differentially regulated: (i) in C. butyricum VPI 3266, the in vitro hydrogenase activity is 10-fold lower than that in C. acetobutylicum DG1(pSPD5), and (ii) while the ferredoxin-NAD+ reductase activity is high and the NADH-ferredoxin reductase activity is low in C. acetobutylicum DG1(pSPD5), the reverse is observed for C. butyricum VPI 3266. Thirdly, lactate dehydrogenase activity is only detected in the C. acetobutylicum DG1(pSPD5) culture, explaining why this microorganism produces lactate.  相似文献   

19.
L-Lactaldehyde is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. Under aerobic conditions, L-lactaldehyde is oxidized to L-lactate by the enzyme lactaldehyde dehydrogenase, while under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol by the enzyme propanediol oxidoreductase. Aerobic growth on either of the methyl pentoses induces a lactaldehyde dehydrogenase enzyme which is inhibited by NADH and is very stable under anaerobic conditions. In the absence of oxygen, the cell shifts from the oxidation of L-lactaldehyde to its reduction, owing to both the induction of propanediol oxidoreductase activity and the decrease in the NAD/NADH ratio. The oxidation of L-lactaldehyde to L-lactate is again restored upon a change to aerobic conditions. In this case, only the NAD/NADH ratio may be invoked as a regulatory mechanism, since both enzymes remain active after this change. Experimental evidence in the presence of rhamnose with mutants unable to produce L-lactaldehyde and mutants capable of producing but not further metabolizing it points toward L-lactaldehyde as the effector molecule in the induction of lactaldehyde dehydrogenase. Analysis of a temperature-sensitive mutation affecting the synthesis of lactaldehyde dehydrogenase permitted us to locate an apparently single regulator gene linked to the ald locus at 31 min and probably acting as a positive control element on the expression of the structural gene.  相似文献   

20.
In a previous study, we showed that 1,3-propanediol (1,3-PD) was still produced from glycerol by the Klebsiella pneumoniae mutant strain defective in 1,3-PD oxidoreductase (DhaT), although the production level was lower compared to the parent strain. As a potential candidate for another putative 1,3-PD oxidoreductase, we identified and characterized a homolog of Escherichia coli yqhD (88% homology in amino acid sequence), which encodes an alcohol dehydrogenase and is well known to replace the function of DhaT in E. coli. Introduction of multiple copies of the yqhD homolog restored 1,3-PD production in the mutant K. pneumoniae strain defective in DhaT. In addition, by-product formation was still eliminated in the recombinant strain due to the elimination of the glycerol oxidative pathway. An increase in NADP-dependent 1,3-PD oxidoreductase activity was observed in the recombinant strain harboring multiple copies of the yqhD homolog. The level of 1,3-PD production during batch fermentation in the recombinant strain was comparable to that of the parent strain; further engineering can generate an industrial strain producing 1,3-propanediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号