首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In North Carolina, Tomato spotted wilt tospovirus (family Bunyaviridae, genus Tospovirus, TSWV) is vectored primarily by the tobacco thrips, Frankliniella fusca (Hinds), and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). TSWV overwinters in winter annual weeds from which it is spread to susceptible crops in spring. Because most susceptible crops are destroyed after harvest before winter weeds emerge in the fall, infected summer weeds are thought to be the principal source for spread of TSWV to winter annual weeds in fall. A survey of summer weeds associated with TSWV-susceptible crops in the coastal plain of North Carolina conducted between May and October revealed that relatively few species were commonly infected with TSWV and supported populations of F. fusca or F. occidentalis. F. occidentalis made up > 75% of vector species collected from 15 summer weed species during 2002. The number of F. occidentalis and F. fusca immatures collected from plant samples varied significantly among plant species. Ipomoea purpurea (L.) Roth, Mollugo verticillata L., Cassia obtusifolia L., and Amaranthus palmeri S. Wats supported the largest numbers of immature F. occidentalis. Richardia scabra L., M. verticillata, and Ipomoea hederacea (L.) supported the largest numbers of F. fusca immatures. TSWV was present at 16 of 17 locations, and naturally occurring infections were found in 14 of 29 weed species tested. Five of the TSWV-infected species have not previously been reported as hosts of TSWV (A. palmeri, Solidago altissima L., Ipomoea lacunosa L., I. purpurea, and Phytolacca americana L.). Estimated rates of infection were highest in I. purpurea (6.8%), M. verticillata (5.3%), and I. hederacea (1.9%). When both the incidence of infection by TSWV and the populations of F. occidentalis and F. fusca associated with each weed species are considered, the following summer weed species have the potential to act as significant sources for spread of TSWV to winter annual weeds in fall: I. purpurea, I. hederacea, M. verticillata, A. palmeri, C. obtusifolia, R. scabra, Ambrosia artemisiifolia L., Polygonum pensylvanicum L., and Chenopodium album L.  相似文献   

2.
The biological transmission of a recently discovered tospovirus species, Chrysanthemum stem necrosis virus (CSNV), was studied. The transmission capacity of three thrips species ( Frankliniella schultzei , Frankliniella occidentalis and Thrips tabaci ) was tested using a leaf disc assay combined with DAS-ELISA. This capacity was tested with adults which were given an acquisition access period of 16 h on CSNV-infected plants as new-born larvae, up to 8 h old. The virus was efficiently transmitted by F. schultzei (78.1%) and F. occidentalis (65.1%), but not at all by T. tabaci (0.0%). Infection was confirmed in adult thrips; high virus titres were found in 75.9% of F. schultzei and 97.4% of F. occidentalis adults. Although T. tabaci did not transmit CSNV in this study, comparatively low amounts of virus were detected in 75.0% of the tested population. The results obtained showed that F. occidentalis and F. schultzei may be the major vectors of CSNV in Brazil.  相似文献   

3.
Possible differences in tomato spotted wilt virus (TSWV) transmission vector competency between Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) males and females were investigated. The males of the Dutch reference population NL3 transmitted TSWV at a notably higher rate (57%) than the females (32%). The viruliferous males also transmitted more frequently within the first six days after adult emergence than the females. For both sexes, the transmission efficiency dropped with age, simultaneously with the consumption rate. The higher vector efficiency for males appeared to be a general phenomenon as this feature was also found for thirteen other F. occidentalis populations, which originated from distinct geographic regions.  相似文献   

4.
Cucumber mosaic virus (CMV) is of great importance to the Bulgarian economy and hence a detailed knowledge of its diversity under local geographic and climatic conditions is required. An extended study was carried out on CMV strains the currently occur in Bulgaria. Fifty-one isolates and strains found in different regions and various crops were biologically characterized and serologically differentiated into subgroups I and II using different variants of enzyme-linked immunosorbent assay (ELISA) [double antibody sandwich (DAS)-, antigen-coated plate (ACP)-, triple antibody sandwich (TAS)- with poly and monoclonal antibodies] and immunodiffusion tests. The ELISA modifications with monoclonal antibodies individually (ACP) or in combination with polyclonal antibodies (TAS-ELISA) are suitable for mass screening of CMV isolates. The hyperimmune sera against strains from CMV subgroups I and II were very efficient for use in isolate differentiation via gel double immunodiffusion. The results obtained correlated with the polymerase chain reaction and restriction fragment length polymorphism data reported by other authors. The majority of the isolates belonged to subgroup I, whereas 10, mainly from tomato and pepper, belonged to subgroup II. Most of the subgroup II isolates came from the north of Bulgaria. The results of the present study will help to clarify the virus epidemiology and to develop specific control measures.  相似文献   

5.
6.
张敏敏  赵巍巍  慕卫  刘峰  张友军  吴青君 《昆虫学报》2014,57(10):1171-1179
【目的】西花蓟马Frankliniella occidentalis (Pergande)是重要的入侵害虫,是番茄斑萎病毒(TSWV)最有效的传播媒介,TSWV对西花蓟马的生长发育有一定的影响。多杀菌素是防治西花蓟马最有效的药剂之一,但已有田间西花蓟马对多杀菌素产生抗药性的报道。TSWV对抗性西花蓟马是否也有影响及程度如何尚不清楚。本研究通过对此问题进行深入研究,以期为进一步了解TSWV对西花蓟马的影响提供依据。【方法】应用特定年龄-龄期及两性生命表的方法,研究用番茄斑萎病毒处理和未处理的多杀菌素抗性和敏感西花蓟马种群的生物学特性;用叶管药膜法测定不同处理种群对3种药剂(多杀菌素、甲氨基阿维菌素苯甲酸盐和虫螨腈)的敏感性变化。【结果】对于抗性品系,TSWV处理后西花蓟马的发育历期缩短,雌成虫寿命和产卵量略高,但与对照组差异不显著(P>0.05),内禀增长率(r)和净生殖率(R0)分别为0.0433 d-1和2.210,显著高于对照组(分别为0.0356 d-1和1.972)(P ≤ 0.001)。对于敏感品系,TSWV处理后西花蓟马的发育历期缩短,雌雄成虫寿命均显著延长(P ≤ 0.001),产卵量也略有提高,R0为4.125,显著高于对照组(3.979)(P ≤ 0.001)。TSWV处理后敏感和抗性西花蓟马对多杀菌素的敏感性没有发生明显变化,对甲氨基阿维菌素苯甲酸盐和虫螨腈的敏感性显著降低。【结论】番茄斑萎病毒对多杀菌素敏感和抗性西花蓟马均有直接有利影响,病毒处理的西花蓟马发育历期缩短,繁殖能力增强,成虫寿命延长,对药剂的敏感性降低。  相似文献   

7.
Mouse hybridoma cells, secreting monoclonal antibodies (MCA) against tomato spotted wilt virus, were produced and screened for virus specificity by an indirect triple antibody ELISA, using a rabbit polyclonal antiserum for antigen trapping. A Bulgarian virus isolate from tobacco was used for immunisation of mice and rabbits. One fusion eventually led to 10 stable hybridoma cell lines, all of which produced antibodies of IgG-type though of different subgroups. Since none of the MCAs reacted with TSWV structural proteins after electrophoresis and transfer to nitrocellulose, other methods were chosen to examine their protein specificity. Purified viral cores and detergent-solubilised envelope proteins were used as antigens for ELISA, or, alternatively, glycosylated viral envelope proteins were trapped onto microtitre plates coated with lectins in order to detect MCAs specific for them. Both methods, independently, led to the identification of two MCAs that were specific for envelope proteins of TSWV. Only these two antibodies reacted with intact TSWV particles when examined by immunogold labelling in the electron microscope. The reaction of all MCAs with 11 different TSWV isolates eventually led to the selection of one core- and one envelope-specific antibody for routine use. Core-specific MCAs revealed serological differences between isolates belonging to the common serotype (= lettuce serotype), but did not react with the serotype TSWV-I. When comparing different ELISA procedures, broadest reactivity and highest sensitivity with different isolates were obtained in an indirect test procedure, using goat anti-mouse antibody conjugates.  相似文献   

8.
Feeding behavior and scar production of male and female F. occidentalis (Pergande) (Thysanoptera: Thripidae) were studied in relation to transmission of tomato spotted wilt tospovirus (TSWV). Electrical penetration graph (EPG) analysis showed that females feed more frequently and intensively than males. The feeding intensity, reflected by silvery scar production and studied by an image analysis system, demonstrated that females induced more numerous scars than males. At the same time, males transmitted TSWV with a higher efficiency than females, indicating that TSWV transmission and scar production are not positively correlated. Furthermore, males produced significantly more local lesions of TSWV than females. These quantitative differences in scar production and transmission of TSWV can be explained by the lower mobility and higher consumption rate of females. The influence of the sex-ratio on crop damage and virus transmission, and thus to the spread of TSWV, is emphasized.  相似文献   

9.
TSWV belongs to the genus Tospovirus which was established in the family Bunyaviridae, a family of animal viruses. Besides TSWV, Impatiens necrotic spot virus (INSV) and ground nut bud necrosis virus (GBNV) were established as different Tospovirus species. Tospoviruses have quasispherical particles of 85 nm diametre which are surrounded by a membrane and contain 3 RNA species and 4 structural proteins. In Tospovirus infected plant cells virions were detected in cavaties of the endoplasmatic reticulum and additionally amorphous electron dense material accumulates in infected cells. Defective forms of TSWV lack the ability to form complete virus particles. TSWV is the only plant pathogenic virus that is transmitted by thrips which transmit the virus with different efficiency. The virus has an extensive plant host range of more than 360 different species. The developing symptoms depend on the Tospovirus species, the virulence of the virus strains and the environmental conditions.

Based on the reaction of TSWV isolates with N‐specific polyclonal antisera, 3 serogroups were established. The most frequently used technique for serologically based diagnosis of Tospoviruses is DAS ELISA with N‐specific or preadsorbed antisera against complete virus. For TSWV epidemiology distinct weeds and cultural host plants play an important role for the survival of virus and vector. Breeding for resistance is the most important preventive measure of control.  相似文献   

10.
寄主植物接种番茄斑萎病毒对西花蓟马种群的影响   总被引:1,自引:0,他引:1  
【目的】西花蓟马Frankliniella occidentalis (Pergande)是一种入侵我国的重要害虫, 而番茄斑萎病毒是以西花蓟马传播为主的一种极具危害性的世界性病毒, 通过研究西花蓟马与番茄斑萎病毒之间的互作将有助于进一步深入理解西花蓟马以及番茄斑萎病毒的发生与猖獗机制, 同时也将为制定合理、可持续的控制西花蓟马及其传播的植物病毒防控策略提供理论依据。【方法】利用应用特定年龄-龄期及两性生命表方法, 研究了西花蓟马在辣椒3种处理(健康CK、机械损伤MD、机械接种番茄斑萎病毒MI)叶片上的生长发育、存活及种群增长。【结果】健康、机械损伤和机械接毒叶片上的发育历期依次为12.45, 11.97和11.18 d。雌雄成虫寿命和雌虫产卵量在不同处理植株叶片上差异显著(P<0.05), 在机械接毒叶片上寿命最长(雌13.51 d, 雄12.69 d); 繁殖能力最强, 产子代数高达33.01头1龄若虫/雌。健康、机械损伤和机械接毒叶片上西花蓟马内禀增长率分别为-0.009, 0.153和0.190 d-1, 净生殖率依次为0.84, 14.54和21.79。【结论】番茄斑萎病毒诱导寄主植物辣椒反应使西花蓟马发育历期缩短, 成虫寿命延长, 繁殖能力提高, 种群增长加速。  相似文献   

11.
12.
王吉成  李洁  丁天波  褚栋 《昆虫学报》2020,63(2):159-165
【目的】本研究旨在建立TaqMan实时荧光定量PCR(TaqMan RT-qPCR)技术,快速检测单头烟粉虱Bemisia tabaci体内的番茄褪绿病毒(tomato chlorosis virus,ToCV)。【方法】根据ToCV外壳蛋白保守序列设计了1对特异性引物和1条TaqMan探针,建立了TaqMan RT-qPCR方法;与常规PCR检测进行比较,检测该方法的灵敏度与特异性;并应用该方法对单头烟粉虱成虫体内ToCV进行了快速检测。【结果】本研究构建的TaqMan RT-qPCR检测ToCV的标准曲线,其循环阈值(Ct值)与模板浓度具有良好的线性关系,扩增效率为98%。该方法对ToCV的最低检测浓度为8.3×10 copies/μL,灵敏度是常规RT-PCR的1000倍。该方法与田间番茄两种重要病毒番茄黄化曲叶病毒(tomato yellow leaf curl virus,TYLCV)和番茄斑萎病毒(tomato spotted wilt virus,TSWV)检测无交叉反应。单头烟粉虱成虫ToCV检测结果表明,温室内ToCV侵染植株上烟粉虱携毒率为100%,田间烟粉虱的携毒率为30%。【结论】本研究建立的TaqMan RT-qPCR检测方法,可快速有效检测单头烟粉虱体内ToCV携毒情况,为该病毒病的防控提供了技术支撑。  相似文献   

13.
【目的】烟粉虱 Bemisia tabaci 是番茄黄曲叶病毒(Tomato yellow leaf curl virus, TYLCV)在自然界的唯一传播媒介,除了可以直接取食获取TYLCV,烟粉虱还可以通过交配获取此植物病毒。虽然前人研究证明了烟粉虱Middle East-Asia Minor 1 (MEAM1)和Mediterranean (MED)隐种都可以通过交配在两性个体之间水平传播TYLCV,但有关MEAM1与MED隐种水平传播TYLCV的能力是否存在差异,不同研究的结果却并不一致。另外,目前尚无关于烟粉虱的水平传播行为是否有助于TYLCV在田间扩散的相关研究。【方法】从浙江、广东、云南和河南4个省份的田间采集MEAM1和MED隐种烟粉虱种群,在室内应用分子标记对各种群所属隐种鉴定后分别建立7个供试种群,然后观察每个种群内带毒成虫与不带毒成虫通过交配在不同性别个体之间水平传播TYLCV的能力,并选用采自广东的MEAM1隐种烟粉虱模拟群体交配实验探究通过交配获毒的烟粉虱个体是否具有传播TYLCV致健康番茄植株发病的能力。【结果】4个省内的MEAM1和MED隐种烟粉虱都可通过交配对TYLCV进行水平传播,但传播频率一般在10%以下。不同省份的MEAM1隐种种群之间在水平传播TYLCV的能力上无显著差异,不同省份的MED隐种种群之间也不存在显著差异。另外,同一省份的MEAM1隐种与MED隐种之间在水平传播TYLCV的能力上也不存在显著差异,而且在两个隐种中,带毒雄虫将病毒水平传播给不带毒雌虫与带毒雌虫将病毒水平传播给不带毒雄虫的频率没有显著差异。研究还表明,采自广东的MEAM1隐种烟粉虱个体通过交配水平获毒后不能致健康番茄植株发病。【结论】综合以上结果,我们推测TYLCV在中国境内两个入侵烟粉虱隐种MEAM1和MED各自种群内个体之间的水平传播概率较低,对该病毒在田间的扩散可能没有作用或作用不大。  相似文献   

14.
Local adaptation between sympatric host and parasite populations driven by vector genetics appears to be a factor that influences dynamics of disease epidemics and evolution of insect-vectored viruses. Although T. tabaci is the primary vector of Tomato spotted wilt virus (TSWV) in some areas of the world, it is not an important vector of this economically important plant virus in many areas where it occurs. Previous studies suggest that genetic variation of thrips populations, virus isolates, or both are important factors underlying the localized importance of this species as a vector of TSWV. This study was undertaken to quantify variation in transmissibility of TSWV isolates by T. tabaci, in the ability of T. tabaci to transmit isolates of TSWV, and to examine the possibility that genetic interactions and local adaptation contribute to the localized nature of this species as a vector of TSWV. Isofemale lines of Thrips tabaci from multiple locations were tested for their ability to transmit multiple TSWV isolates collected at the same and different locations as the thrips. Results revealed that the probability of an isofemale line transmitting TSWV varied among virus isolates, and the probability of an isolate being transmitted varied among isofemale lines. These results indicate that the interaction of T. tabaci and TSWV isolate genetic determinants underlie successful transmission of TSWV by T. tabaci. Further analysis revealed sympatric vector-virus pairing resulted in higher transmission than allopatric pairing, which suggests that local adaptation is occurring between T. tabaci and TSWV isolates.  相似文献   

15.
Sweet chestnut (Castanea sativa Mill.) is a multipurpose species of great ecological and economic importance in southwest Bulgaria. Bulgarian chestnut forests are severely degraded, however, due to the intensive exploitation and bad management that have occurred over the last 2000 years. Given the urgent need to define conservation strategies to preserve the biodiversity of Bulgarian chestnut, we estimated its genetic variability. A set of eight microsatellite primers were used to analyze the genetic diversity and structure of six C. sativa populations distributed throughout the range of species in Bulgaria. Results showed a generally high level of genetic diversity but little divergence among populations. A significant, positive, within-population inbreeding coefficient (Fis) was observed in four populations. A STRUCTURE analysis revealed three genetic clusters. Using a landscape approach, significant genetic barriers among populations were found by integrating genetics with geographical distance. We hypothesize that one population is a relict from a glacial refugium; the structure of the remaining populations is probably the result of a combination of natural events and human impacts. For the purposes of conservation planning, we have identified populations that are particularly rich in diversity and private alleles that are good candidates for preservation.  相似文献   

16.
Abstract:  The mechanism leading to vector competence of thrips species to transmit tomato spotted wilt virus (TSWV) is not well characterized. We investigated the interaction of TSWV and the non-vector species Frankliniella tritici . A monoclonal antibody to the non-structural protein (NSs) of the TSWV was used to detect TSWV replication within the thrips by immunofluorescence microscopy and enzyme-linked immonosorbent assay (ELISA). TSWV was acquired by F. tritici , replicated and moved within the alimentary canal of F. tritici similar to a known vector of TSWV, Frankliniella occidentalis . However, virus was not found in the salivary glands of F. tritici , which is a prerequisite to virus transmission. Thus, movement to the salivary glands may determine vector incompetence of F. tritici .  相似文献   

17.
Plants can be genetically engineered for virus resistance by transformation with a viral gene. We transformed tobacco with the tomato spotted wilt virus (TSWV) nucleocapsid gene from the Hawaiian L isolate in order to obtain TSWV resistant breeding lines. Doubled-haploid lines were produced from primary transgenic plants that were selected for resistance to the virus. Several of these lines showed very high levels of resistance and were symptomless after inoculation with the Hawaiian L isolate of TSWV. The accumulation of only low levels of full-length transgene RNA and protein observed in these lines is consistent with an RNA-mediated mechanism of resistance. The lines that were highly resistant to the Hawaiian L isolate of TSWV were also found to be highly resistant to several other isolates of TSWV, while lines that were only moderately resistant to the Hawaiian L isolate were often susceptible to the other isolates. The highly resistant lines were advanced over several generations by self-pollination. Although these lines were fully homozygous, several lines lost resistance in later generations, indicating that the resistance was unstable. Selection for resistance in these unstable lines did not prevent the occurrence of susceptible progeny in subsequent generations. Therefore, testing over several generations is required to determine the stability of resistance when breeding crops with transgenic virus resistance.  相似文献   

18.
Belliure B  Janssen A  Sabelis MW 《Oecologia》2008,156(4):797-806
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector.  相似文献   

19.
Tomato spotted wilt virus (TSWV) is one of the most devastating plant viruses and often causes severe crop losses worldwide. Generally, mature plants become more resistant to pathogens, known as adult plant resistance. In this study, we demonstrated a new phenomenon involving developmentally regulated susceptibility of Arabidopsis thaliana to TSWV. We found that Arabidopsis plants become more susceptible to TSWV as plants mature. Most young 3-week-old Arabidopsis were not infected by TSWV. Infection of TSWV in 4-, 5-, and 6-week-old Arabidopsis increased from 9%, 21%, and 25%, respectively, to 100% in 7- to 8-week-old Arabidopsis plants. Different isolates of TSWV and different tospoviruses show a low rate of infection in young Arabidopsis but a high rate in mature plants. When Arabidopsis dcl2/3/4 or rdr1/2/6 mutant plants were inoculated with TSWV, similar results as observed for the wild-type Arabidopsis plants were obtained. A cell-to-cell movement assay showed that the intercellular movement efficiency of TSWV NSm:GFP fusion was significantly higher in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves. Moreover, the expression levels of pectin methylesterase and β-1,3-glucanase, which play critical roles in macromolecule cell-to-cell trafficking, were significantly up-regulated in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves during TSWV infection. To date, this mature plant susceptibility to pathogen infections has rarely been investigated. Thus, the findings presented here should advance our knowledge on the developmentally regulated mature host susceptibility to plant virus infection.  相似文献   

20.
Tomato spotted wilt virus (TSWV) causes serious diseases of many economically important crops. Disease control has been achieved by breeding tomato and pepper cultivars with the resistance genes Sw‐5 and Tsw, respectively. However, TSWV isolates overcoming these genetic resistances have appeared in several countries. To evaluate the risk of spread of these resistance‐breaking isolates, we tested their ability of transmission by the main vector of TSWV, the thrips Frankliniella occidentalis. We compared the transmission rate by thrips of six TSWV isolates of different biotype (able or unable to overcome this resistance in pepper and tomato), and with divergent genotype (A and B). Our results indicate that the transmission rate was related to the amount of virus accumulated in thrips but not to virus accumulation in the source plants on which thrips acquired the virus. No correlation was found between transmission efficiency by thrips and the genotype or between transmission efficiency and the ability of overcoming both resistances. This result suggests that resistance‐breaking isolates have the same potential to be transmitted as the isolates unable to infect resistant tomato and pepper cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号