首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neocortical circuits can undergo dynamic rearrangements, not only in response to injury, but also when new skills are acquired. But although training can lead to functional rewiring of the cortex, we are far from being able to reprogram an animal by manipulating its cortical circuitry directly.  相似文献   

2.
Single cortical columns of areas 17, 18 in the cat were microiontophoretically injected with horseradish peroxidase. Spatial and laminar distributions of retrogradell labelled cells in both areas were investigated. Following injections in area 17 or in area 18 the labelled cells' region in area 17 was elongated (in a tangential plane) along the representation of visual field horizontal meridian. However the labelled cells' region in area 18 was elongated along the representation of vertical meridian. Such projection patterns appear to be common in these cortical areas throughout the central 10 degrees on various elevations (from -40 degrees to +10 degrees) of the visual field representation. Thus the spatial arrangement of intrinsic and extrinsic connections in each area coincides, at the same time in area 17 they are orthogonal to area 18. The following visual information exchange scheme may be suggested. Area 17 may supply the area 18 with more detailed information on the horizontal component of the visual image, and in the opposite direction the information on the vertical component of the same image may be supplied.  相似文献   

3.
We investigated distribution of retrograde-labelled cells in cortical areas 17, 18, and the transition zone 17/18 of both hemispheres in cats after microiontophoretic horseradish peroxidase (HRP) injections into the single cortical columns of area 17, 18, 19 or 21a. On the base of clustered pattern of intrinsic labelling, asymmetric location of labelled callosal cells that was associated with the appropriate pattern of labelling in layers A and A1 of lateral geniculate nucleus, we suggest that cortical neuronal connections are eye-specific and may provide for each eye a separate binding of visual hemifields. After HRP injections into columns of area 19 or 21a, the disparate inputs from areas 17, 18 and transition zone 17/18 were revealed. Such connections may provide a local depth information and the selection of stereoscopic surfaces in central sectors of visual space.  相似文献   

4.
While it is widely assumed that the long-range horizontal connections in V1 are present to support contour integration, there has been only limited consideration of other possible relationships between anatomy and physiology (the horizontal connections) and visual function beyond contour integration. We introduce the possibility of other relationships directly from the perspective of computation and differential geometry by identifying orientation columns in visual physiology with the (unit) tangent bundle in differential geometry. This suggests abstracting early vision in a space that incorporates both position and orientation, from which we show that the physiology is capable of supporting a number of functional computations beyond contour integration, including texture-flow and shading-flow integration, as well as certain relationships between them. The geometric abstraction emphasizes the role of curvature, which necessitates a coupled investigation into how it might be estimated. The result is an elaboration of layer-to-layer interactions within an orientation column, with non-linearities possibly implemented by shunting inhibition. Finally, we show how the same computational framework naturally lends itself to solving stereo correspondence, with binocular tangents abstracting curves in space.  相似文献   

5.
The development of cortical layers, areas and networks is mediated by a combination of factors that are present in the cortex and are influenced by thalamic input. Electrical activity of thalamocortical afferents has a progressive role in shaping cortex. For early thalamic innervation and patterning, the presence of activity might be sufficient; for features that develop later, such as intracortical networks that mediate emergent responses of cortex, the spatiotemporal pattern of activity often has an instructive role. Experiments that route projections from the retina to the auditory pathway alter the pattern of activity in auditory thalamocortical afferents at a very early stage and reveal the progressive influence of activity on cortical development. Thus, cortical features such as layers and thalamocortical innervation are unaffected, whereas features that develop later, such as intracortical connections, are affected significantly. Surprisingly, the behavioural role of 'rewired' cortex is also influenced profoundly, indicating the importance of patterned activity for this key aspect of cortical function.  相似文献   

6.
Berardi N  Pizzorusso T  Maffei L 《Neuron》2004,44(6):905-908
The effects of monocular deprivation (MD) on the ocular dominance of visual cortical neurons are a paradigmatic example of experience-dependent plasticity. Here we review recent data showing that extracellular matrix (ECM) plays an important role in the control of experience-dependent plasticity both in the developing and adult visual cortex.  相似文献   

7.
1. The distribution of tectal projections of two visual areas of the superior temporal sulcus (MT and MST areas) has been studied, in five Macaca fascicularis, by means of the autoradiographic method tracing the anterograde transport of tritiated aminoacids intracortically injected. 2. In all cases the ipsilateral superior colliculi (SC) were found labelled, whereas the contralateral ones were devoid of label. 3. The three brains injected in the MT area resulted in SC labels that involved the superficial gray layer (SGS), the stratum opticum (SO) and the intermediate gray layer (SGI), sparing the layers below SGI. 4. The collicular labels found after injections within the MST area exhibited their distribution over the deep SC subdivision, whereas they spared all the superficial layers but the deep part of the SO. 5. In two animals with large uptake zones, one in MT and the other in MST, the labelling within the SGI showed a cluster-like pattern. 6. The distinct found bulk of projections of MT and MST respectively to the superficial and deep subdivisions of the SC, along with a number of peculiar connections of the MST area as mentioned in the text, contribute to depict an overall neural network in which MST appears to be more strongly involved than MT in linking sensory visual with oculomotor attentive functions.  相似文献   

8.
Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.  相似文献   

9.
Visual cortical neurons exhibit a high degree of response selectivity and are grouped into small columns according to their response preferences. The columns are located at regularly spaced intervals covering the whole cortical representation of the visual field with a modular system of feature-selective neurons. The selectivity of these cells and their modular arrangement is thought to emerge from interactions in the network of specific intracortical and thalamocortical connections. Understanding the ontogenesis of this complex structure and contributions of intrinsic and extrinsic, experience-dependent mechanisms during cortical development can provide new insights into the way the visual cortex processes information about the environment. Available data about the development of connections and response properties in the visual cortex suggest that maturation proceeds in two distinct steps. In the first phase, mechanisms inherent to the cortex establish a crude framework of interconnected neural modules which exhibit the basic but still immature traits of the adult state. Relevant mechanisms in this phase are assumed to consist of molecular cues and patterns of spontaneous neural activity in cortical and corticothalamic interconnections. In a second phase, the primordial layout becomes refined under the control of visual experience establishing a fine-tuned network of connections and mature response properties.  相似文献   

10.
The extent to which areas in the visual cerebral cortex differ in their ability to support perceptions has been the subject of considerable speculation. Experiments examining the activity of individual neurons have suggested that activity in later stages of the visual cortex is more closely linked to perception than that in earlier stages [1-9]. In contrast, results from functional imaging, transcranial magnetic stimulation, and lesion studies have been interpreted as showing that earlier stages are more closely coupled to perception [10-15]. We examined whether neuronal activity in early and later stages differs in its ability to support detectable signals by measuring behavioral thresholds for detecting electrical microstimulation in different cortical areas in two monkeys. By training the animals to perform a two-alternative temporal forced-choice task, we obtained criterion-free thresholds from five visual areas--V1, V2, V3A, MT, and the inferotemporal cortex. Every site tested yielded a reliable threshold. Thresholds varied little within and between visual areas, rising gradually from early to later stages. We similarly found no systematic differences in the slopes of the psychometric detection functions from different areas. These results suggest that neuronal signals of similar magnitude evoked in any part of visual cortex can generate percepts.  相似文献   

11.
Schlack A  Albright TD 《Neuron》2007,53(6):881-890
The pictorial content of visual memories recalled by association is embodied by neuronal activity at the highest processing stages of primate visual cortex. This activity is elicited by top-down signals from the frontal lobe and recapitulates the bottom-up pattern normally obtained by the recalled stimulus. To explore the generality and mechanisms of this phenomenon, we recorded motion-sensitive neurons at an early stage of cortical processing. After monkeys learned to associate directions of motion with static shapes, these neurons exhibited unprecedented selectivity for the shapes. This emergent shape selectivity reflects activation of neurons representing the motion stimuli recalled by association, and it suggests that recall-related activity may be a general feature of neurons in visual cortex.  相似文献   

12.
This study deals with neurophysiologically based models simulating electrical brain activity (i.e., the electroencephalogram or EEG, and evoked potentials or EPs). A previously developed lumped-parameter model of a single cortical column was implemented using a more accurate computational procedure. Anatomically acceptable values for the various model parameters were determined, and a multi-dimensional exploration of the model parameter-space was conducted. It was found that the model could produce a large variety of EEG-like waveforms and rhythms. Coupling two models, with delays in the interconnections to simulate the synaptic connections within and between cortical areas, made it possible to replicate the spatial distribution of alpha and beta activity. EPs were simulated by presenting pulses to the input of the coupled models. In general, the responses were more realistic than those produced using a single model. Our simulations also suggest that the scalp-recorded EP is at least partially due to a phase reordering of the ongoing activity.  相似文献   

13.
Suzuki S  Grabowecky M 《Neuron》2007,56(4):741-753
Binocular rivalry has been extensively studied to understand the mechanisms that control switches in visual awareness and much has been revealed about the contributions of stimulus and cognitive factors. Because visual processes are fundamentally adaptive, however, it is also important to understand how experience alters the dynamics of perceptual switches. When observers viewed binocular rivalry repeatedly over many days, the rate of perceptual switches increased as much as 3-fold. This long-term rivalry speeding exhibited a pattern of image-feature specificity that ruled out primary contributions from strategic and nonsensory factors and implicated neural plasticity occurring in both low- and high-level visual processes in the ventral stream. Furthermore, the speeding occurred only when the rivaling patterns were voluntarily attended, suggesting that the underlying neural plasticity selectively engages when stimuli are behaviorally relevant. Long-term rivalry speeding may thus reflect broader mechanisms that facilitate quick assessments of signals that contain multiple behaviorally relevant interpretations.  相似文献   

14.
In most sensory systems, the sensory cortex is the place where sensation approaches perception. As described in this review, olfaction is no different. The olfactory system includes both primary and higher order cortical regions. These cortical structures perform computations that take highly analytical afferent input and synthesize it into configural odor objects. Cortical plasticity plays an important role in this synthesis and may underlie olfactory perceptual learning. Olfactory cortex is also involved in odor memory and association of odors with multimodal input and contexts. Finally, the olfactory cortex serves as an important sensory gate, modulating information throughput based on recent experience and behavioral state.  相似文献   

15.
16.
17.
18.
When presented with his/her own reflection in a mirror (within an environment that is natural for that particular group of primates) the position that animal holds within the group affects his/her interpretation of that image. Each individual perceives the animal in the mirror to be another animal of equal circumstances as him/herself. An alpha animal sees a potential alpha animal attempting to take over the troop. A beta or lesser animal sees another non-alpha animal attempting to enter the troop through affiliation. In this study a group of zoo raised Japanese macaques were challenged with their own reflection in a mirror. Incidents of aggressive behavior rose in the alpha animals while all affiliative behavior ceased between members of the group. The lesser animals vied for time with the mirror, each attempting to be near the perceived con-specific.  相似文献   

19.
Cognition is based on the integrated functioning of hierarchically organized cortical processing streams in a manner yet to be clarified. Because integration fundamentally depends on convergence and the complementary notion of divergence of the neuronal connections, we analysed integration by measuring the degree of convergence/divergence through the connections in the network of cortical areas. By introducing a new index, we explored the complementary convergent and divergent nature of connectional reciprocity and delineated the backward and forward cortical sub-networks for the first time. Integrative properties of the areas defined by the degree of convergence/divergence through their afferents and efferents exhibited distinctive characteristics at different levels of the cortical hierarchy. Areas previously identified as hubs exhibit information bottleneck properties. Cortical networks largely deviate from random graphs where convergence and divergence are balanced at low reciprocity level. In the cortex, which is dominated by reciprocal connections, balance appears only by further increasing the number of reciprocal connections. The results point to the decisive role of the optimal number and placement of reciprocal connections in large-scale cortical integration. Our findings also facilitate understanding of the functional interactions between the cortical areas and the information flow or its equivalents in highly recurrent natural and artificial networks.  相似文献   

20.
We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys (Chlorocebus pygerythrus) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β = 0.046, P < 0.001), short photoperiod (β = 0.010, P < 0.001) and low rainfall over the previous 2 months, which we used as a proxy for food availability (β = 0.001, P < 0.001). Despite the lower average winter minimum body temperatures, there was no change in the lower modal body temperature between winter and summer. Therefore, unlike the regulated physiological adjustments proposed for torpor or hibernation, these minimum winter body temperatures did not appear to reflect a regulated reduction in body temperature. The thermoregulatory plasticity nevertheless may have fitness benefits for vervet monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号