首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the fluorescence decay under polarized light, of ethidium bromide bound to the poly d(A-T) isolated from Cancer Pagurus. The decay of the whole fluorescence is a single exponential function revealing a good homogeneity of the binding sites. The anisotropy decay due to energy transfers between the ethidium bromide molecules bound to a same poly d(A-T) molecule has been analysed, with a Monte Carlo calculation. We found the dye unwinds the poly d(A-T) duplex by an angle of 17 degrees plus or minus 2 degrees. This result is in agreement with the value previously found in the case of calf thymus DNA-ethidium bromide complex, although the base compositions of the two nucleic acids are different.  相似文献   

2.
3.
It has been shown in a preceding work that the fluorescence anisotropy decay of ethidium bromide-DNA complex is accelerated by energy migration between dyes bound to the same DNA molecule. In the present work, this result is confirmed. A quantitative analysis has been performed in the following way. The spectroscopic term of the transfer rate constant has been accurately reevaluated by quantum yield and spectral measurements. One assumes that the dye intercalates between two adjacent base pairs and that its distribution is random along the DNA molecule. One introduces the deformation angle δ of the DNA helix induced by the ethidium bromide intercalation. For several values of δ, the energy migration contribution to the anisotropy decay is computed by a Monte Carlo method. In multiplying these computed functions by the measured brownian anisotropy, one obtains the anisotropy decay curve. Comparison with the experimental data leads to the conclusion that the ethidium bromide molecule unwinds the DNA helix by an angle δ = ?16°. This result is m agreement with the work of other authors. We think that the method used here may provide accurate information on the spatial distribution of an array of chromophores bound to a rigid structure.  相似文献   

4.
Time-integrated and time-resolved fluorescence spectroscopies have been used to probe the photophysical properties of ethidium bromide (Eb) complexed to calf thymus DNA (ct-DNA). Fluorescence decay profiles are obtained using the technique of time-correlated single photon counting (TCSPC), and subsequently analysed using conventional sum-of-exponential (SOE) routines and also the maximum entropy method (MEM). Through use of these methods and simulated decay data, it is demonstrated that the kinetics of Eb in the presence of ds-DNA are best described by a generic model consisting of three exponential terms. At all DNA:Eb ratios and NaCl concentrations studied, free Eb is detected. Furthermore, Eb is found to interact with ds-DNA through two mechanisms, each distinguishable by its fluorescence decaytime. Eb is shown to interact with DNA through classic intercalation, and also through binding at secondary sites. The component decaytimes are shown to be a function of NaCl concentration but independent of DNA:Eb molar ratio.  相似文献   

5.
The fluorescence anisotropy decays of the chromatin ethidium complexes have been measured in solutions in which the dye was bound to the high affinity sites of the nucleosome DNA. Energy transfers between chromatin-bound ethidium molecules cause an increase of the anisotropy decay rate for much smaller values of the concentration ratio of dye to nucleotide than in the case of nacked DNA-ethidium complexes. This result implies that the high affinity sites are clustered on a short nucleosomal DNA segment. Quantitative analysis of the experimental data by computer simulations of the energy transfer process, shows that these sites are gathered on a single nucleosomal DNA segment, 28 base pairs long. Such a segment probably belongs to the nucleosome “linker”, contributing about half of it.  相似文献   

6.
The subnanosecond fluorescence and motional dynamics of the tryptophan residue in the bacteriophage M13 coat protein incorporated within pure dioleoylphosphatidylcholine (DOPC) as well as dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) and dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayers (80/20 w/w) with various L/P ratio have been investigated. The fluorescence decay is decomposed into four components with lifetimes of about 0.5, 2.0, 4.5 and 10.0 ns, respectively. In pure DOPC and DOPC/DOPG lipid bilayers, above the phase transition temperature, the rotational diffusion of the protein molecules contributes to the depolarization and the anisotropy of tryptophan is fitted to a dual exponential function. The longer correlation time, describing the rotational diffusion of the whole protein, shortens with increasing temperature and decreasing protein aggregation number. In DMPC/DMPG lipid bilayers, below the phase transition, the rotational diffusion of the protein is slowed down such that the subnanosecond anisotropy decay of tryptophan in this system reflects only the segmental motion of the tryptophan residue. Because of a heterogeneous microenvironment, the anisotropy decay must be described by three exponentials with a constant term, containing a negative coefficient and a negative decay time constant. From such a decay, the tryptophan residue within the aggregate undergoes a more restricted motion than the one exposed to the lipids. At 20 degrees C, the order parameter of the transition moment of the isolated tryptophan is about 0.9 and that for the exposed one is about 0.5.  相似文献   

7.
In this work, fluorescence anisotropy was used to study DNA binding of the DNA methyltransferase M.TaqI. For this purpose short DNA molecules labelled with three different fluorophores (Cy3, thiazole orange, and ethidium bromide) were prepared in various topologies and their suitability for detection of DNA-protein complex formation was investigated.  相似文献   

8.
The polarized fluorescence of the ethidium bromide (EB)-poly(rA-rU) complex has been studied by pulse fluorometry. As expected for a polynucleotide snowing one single kind of intercalation site, the decay of the whole emission is a single exponential (time constant 27 ns). The anisotropy decay is analysed as follows: (1) A brownian contribution having two correlation times, one of which characterizes local motions and the other a macromolecular motion. (2) A contribution due to transfers between EB molecules fixed to the same polynucleotide molecule, is analysed by a method analogous to the method used in previous work on EB-DNA complexes. That method consists in choosing a molecular model of the complex depending on geometrical parameters, and in simulating the energy migration on that model with a Monte Carlo calculation. Poly(rA-rU) is assumed here to adopt the structure A of RNA. Intercalated EB molecules modify the anale between two consecutive base pairs by δ. The angular position of the EB transition moment is defined by an angle φ. One finds that the angle φ is situated between 0° and 30°, which corresponds to a whole intercalation of the chroniophore as opposed to the semi-intercalation which has been proposed for certain dyes. The angle δ is negative; therefore there is an unwinding of the polyribonucleotide helix. Its absolute value is about 38°, sensibly greater than The value previously found for EB-DNA complexes.  相似文献   

9.
W L Vaz  R H Austin    H Vogel 《Biophysical journal》1979,26(3):415-426
A derivative of the integral membranes protein, cytochrome b5, has been prepared in which the native heme group has been replaced by the structurally similar rhodium(III)-protoporphyrin IX. This metalloporphyrin has a finite triplet yield with a single exponential decay time of 22 microsecond in water. After insertion of the metalloporphyrin into the protein, its triplet-state decay becomes strongly nonexponential with at least three equal amplitude components with time constants varying over a range of 100. The derivatized protein has been incorporated into unilamellar liposomes prepared from dimyristoyllecithin, and the rotational diffusion of the protein in the lipid bilayer has been studied at temperatures above and below the lipid phase transition temperature via triplet absorbance anisotropy decay. The anisotropy decay curves are biphasic both above and below the lipid phase transition. The rotational diffusion constant is found to be 2.4 X 10(5) s-1 at 35 degrees C, and 1.1 X 10(4) s-1 at 10 degrees C, both being calculated from the fast decay component. The ratio of the limiting anisotropy to the initial anisotropy is 0.6 at both temperatures. This implies a cone of restricted motion of 34 degrees for the protein in the bilayer.  相似文献   

10.
The influence of mica surface on DNA/ethidium bromide interactions is investigated by atomic force microscopy (AFM). We describe the diffusion mechanism of a DNA molecule on a mica surface by using a simple analytical model. It appears that the DNA diffusion on a mica surface is limited by the surface friction due to the counterion correlations between the divalent counterions condensed on both mica and DNA surfaces. We also study the structural changes of linear DNA adsorbed on mica upon ethidium bromide binding by AFM. It turns out that linear DNA molecules adsorbed on a mica surface are unable to relieve the topological constraint upon ethidium bromide binding. In particular, strongly adsorbed molecules tend to be highly entangled, while loosely bound DNA molecules appear more extended with very few crossovers. Adsorbed DNA molecules cannot move freely on the surface because of the surface friction. Therefore, the topological constraint increases due to the ethidium bromide binding. Moreover, we show that ethidium bromide has a lower affinity for strongly bound molecules due to the topological constraint induced by the surface friction.  相似文献   

11.
Frequency-domain fluorescence spectroscopy was used to investigate the effects of temperature on the intensity and anisotropy decays of the single tryptophan residues of Staphylococcal nuclease A and its nuclease-conA-SG28 mutant. This mutant has the beta-turn forming hexapeptide, Ser-Gly-Asn-Gly-Ser-Pro, substituted for the pentapeptide Tyr-Lys-Gly-Gln-Pro at positions 27-31. The intensity decays were analyzed in terms of a sum of exponentials and with Lorentzian distributions of decay times. The anisotropy decays were analyzed in terms of a sum of exponentials. Both the intensity and anisotropy decay parameters strongly depend on temperature near the thermal transitions of the proteins. Significant differences in the temperature stability of Staphylococcal nuclease and the mutant exist; these proteins show characteristic thermal transition temperatures (Tm) of 51 and 30 degrees C, respectively, at pH 7. The temperature dependence of the intensity decay data are shown to be consistent with a two-state unfolding model. For both proteins, the longer rotational correlation time, due to overall rotational diffusion, decreases dramatically at the transition temperature, and the amplitude of the shorter correlation time increases, indicating increased segmental motions of the single tryptophan residue. The mutant protein appears to have a slightly larger overall rotational correlation time and to show slightly more segmental motion of its Trp than is the case for the wild-type protein.  相似文献   

12.
13.
The temperature dependence of the circular dichroism of the DNA-ethidium bromide complex at elevated temperatures provides evidence that the optical activity of the complex near 307 nm originates from interactions between intercalated dye molecules while the optical activity near 515 nm results from singly intercalated ethidium bromide molecules. The behavior of the circular dichroism of the complex at elevated temperatures also explains the higher ellipticities near 307 nm which characterize complexes formed between ethidium bromide and denaturated DNA. Finally the circular dichroism data indicate that the melting of the complex takes place in a stepwise manner with some DNA regions, probably AT-rich regions, dissociating first. The implications of these findings regarding the inhibiting effect of ethidium bromide on the function of DNA polymerase are examined.  相似文献   

14.
Induced circular dichroism of DNA-dye complexes   总被引:4,自引:0,他引:4  
C H Lee  C T Chang  J G Wetmur 《Biopolymers》1973,12(5):1098-1122
The binding of methylene blue, proflavine, and ethidium bromide with DNA has been studied by spectrophotometric titration. Methylene blue and proflavine or methylene blue and ethidium bromide were simultaneously titrated by DNA. The results indicate that all of these dyes compete for the same bindine sites. The binding properties are discussed in terms of symmetry. The optical properties of the dye–DNA complexes have been studied as a function of DNA/dye ratio. The induced circular dichriosm due to dye–dye interaction was measured at low dye/DNA ratios for cases involving both the same dye and different dyes. A positive Cotton effect for DNA–proflavine complex may be induced at 465 mμ by eithr proflavine or ethidium bromide, whereas a netgative Cotton effect at 465 mμ may be induced by methylene blue. The limiting circular dichroism, with no dye–dye interaction, and the induced circular dichroism spectra are discussed in terms of symmetry rules.  相似文献   

15.
We used simulations to determine the resolution of complex anisotropy decay laws which is obtainable by frequency-domain fluorometry. The simulations include the effects of torsional and segmental motions of tryptophan residues in proteins, the multiple correlation times of asymmetric molecules, and three-component anisotropy decays. For a protein with a global correlation time of 10 ns it should be possible to resolve torsional motions with correlation times as short as 10 ps if the amplitude of the rapid motion is at least 20% of the total anisotropy decay with r0 = 0.4. Correlation times which differ by only 1.4-fold can be resolved, making this method useful for determination of the shape of proteins and other asymmetric molecules. It is possible to resolve three-component anisotropy decays if the overall difference among the correlation times is 30-fold. Such resolution will be useful for understanding of internal motions of proteins and membranes. The validity of these predictions is demonstrated in the subsequent paper using experimental data for melittin in solution and when bound to membranes (Maliwal, B.P., Hermetter, A. and Lakowicz, J.R. (1986) Biochim. Biophys. Acta 873, 173-181).  相似文献   

16.
E A Winzeler  E W Small 《Biochemistry》1991,30(21):5304-5313
The effects of pH on the torsional flexibility of DNA bound to nucleosome core particles were investigated by using time-resolved fluorescence anisotropy decays of intercalated ethidium. The decays were collected by using time-resolved single-photon counting and were fit to a model developed by J. M. Schurr [(1984) Chem. Phys. 84, 71-96] with a nonlinear least-squares-fitting algorithm developed for this purpose. As the torsional flexibility of DNA is affected by the presence of an intercalating dye, the decays were studied at different ethidium bromide to core particle binding ratios. Because we see large increases in DNA flexibility and in the rotational diffusion coefficient at binding ratios of 0.6 ethidium/core particle and above, we conclude that, under these conditions, the DNA begins to detach from the protein. At lower binding ratios, we observe only small changes in the anisotropy decay. The torsional parameters obtained are a function of N, the number of base pairs of DNA between points of attachment to the histone core. Only if N is greater than 30 base pairs is the torsional rigidity of DNA on a nucleosome core particle higher than that for DNA free in solution. Also, for reasonable values of N (less than 30), the friction felt by the DNA on a core particle is much higher than that felt by free DNA. This indicates that the region of the DNA to which the ethidium binds is highly constrained in its motions. pH changes nearly neutrality at moderate ionic strengths (100 mM) have a substantial effect on the fluorescence anisotropy decays, particularly at early times. These analyses indicated that the observed change on increasing pH can be attributed either to a loosening of the contacts between the DNA and the histone core (increasing N) or to a substantial relaxing of the torsional rigidity of the DNA.  相似文献   

17.
The intensity and anisotropy decays of Wye base fluorescence from yeast tRNA(Phe) were determined by frequency-domain fluorometry. The intensity decay is at least a double exponential in the presence and absence of Mg2+, but the multi-exponential character of the decay is more pronounced in the absence of Mg2+. The anisotropy decay displays components due to overall tRNA rotational diffusion and to local torsional motions. The amplitude of the local motion is decreased 2-fold by the presence of Mg2+. The results are broadly consistent with a more homogeneous environment for the Wye base in the presence of Mg2+.  相似文献   

18.
Superhelix density of replicating simian virus 40 DNA molecules   总被引:6,自引:0,他引:6  
Simian virus 40 replicating DNA molecules were isolated and fractionated according to the extent of replication by isopynic centrifugation in ethidium bromide-CsCl. Electron microscopic examination of the replicating molecules in the presence of ethidium bromide revealed that the sense of the superhelix in replicating molecules is the same as that of simian virus 40 DNA I. Replicating DNA molecules of differing extents of replication were also analyzed by sedimentation in varying concentrations of ethidium bromide. It was observed that the superhelix density of the unreplicated portion of replicating molecules was greater than that of DNA I and that it increased as the degree of replication increased. In contrast with the increase in superhelix density that was related to the extent of replication, all replicating molecules contained a rather constant number (2 to 5) of additional superhelical turns per molecule, irrespective of the extent of replication. This suggests that a region (or regions) of about 20 to 50 nucleotides may exist in a denatured state in replicating molecules, presumably at the replicating forks of the molecule.  相似文献   

19.
Abstract

The DNA binding of BMS 181176, an antitumor antibiotic derivative of rebeccamycin was characterized by DNA unwinding assays, as well as by fluorescence emission and polarization spectroscopic techniques. Unwinding and rewinding of supercoiled DNA was interpreted in terms of intercalation of BMS 181176 into DNA BMS 181176 shows an enhanced fluorescence emission upon binding to the AT sequence and no enhancement upon binding to the GC sequence. BMS 181176 appears to be a weaker binder to poly(dAdT).poly(dAdT) compared to doxorubicin and ethidium bromide. When bound to DNA, the rotational motion of BMS 181176 is substantially decreased as evident from the increase in fluorescence polarization. BMS 181176 exhibits a range of binding strengths depending on the DNA This is demonstrated by the Acridine Orange displacement assay using fluorescence polarization.  相似文献   

20.
The use of intercalating dye molecules in the study of chromatin structure   总被引:3,自引:0,他引:3  
This paper reviews the field of chromatin structure studied by means of dye molecules believed to intercalate within DNA. The emphasis is on dyes whose binding properties are the best characterized (ethidium bromide (EB). actinomycin D(AMD), proflavine (PF)) but studies in which less common dye molecules are used are also considered. A comparison is made between the binding of these dyes to purified DNA and to whole or partially deproteinized chromatin in order to investigate both the availability of DNA in chromatin and the localization of chromosomal proteins or the DNA backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号