首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY. Toxoplasma gondii infections have been reported in a number of marine mammals. Presently it is not known how these animals acquire T. gondii from their aquatic environment. The eastern oyster, Crassostrea virginica , has been shown to remove Cryptosporidium oocysts from seawater and a similar phenomenon may be occurring with T. gondii oocysts and marine invertebrates. The present study was done to determine if eastern oysters could remove and retain T. gondii oocysts from seawater. Oocysts of the VEG strain of T. gondii (1 × 106 oocysts) were placed in seawater (32 ppt NaCl) containing live eastern oysters. The infected seawater was removed one day postinoculation (PI) and replaced with fresh seawater. Selected oysters were removed at 1, 3 and 6 days PL Hemolymph, gill washes, and oyster tissue were collected separately at each observation time. The oyster tissue was homogenized and all 3 samples fed separately to mice. Toxoplasma gondii positive mice were observed at each time period. The results indicate that T. gondii oocysts can be removed from seawater by eastern oysters and retain their infectivity. Contaminated raw oysters may serve as a source of T. gondii infection for marine mammals and humans.  相似文献   

2.
ABSTRACT. We have been collaborating since 1992 in studies on southern sea otters ( Enhdyra lutris nereis ) as part of a program to define factors, which may be responsible for limiting the growth of the southern sea otter population. We previously demonstrated Toxoplasma gondii in sea otiers. We postulated that cat feces containing oocysts could be entering the marine environment through storm run-off or through municipal sewage since cat feces are often disposed down toilets by cat owners. The present study examined the sporulation of T. gondii oocysts in seawater and the survival of sporulated oocysts in seawater. Unsporulated oocysts were placed in 1.5 ppt artificial seawater, 32 ppt artificial seawater or 2% sulfuric acid (positive control) at 24 C in an incubator. Samples were examined daily for 3 days and development monitored by counting 100 oocysts from each sample. From 75 to 80% of the oocysts were sporulated by 3 days post-inoculation under all treatment conditions. Groups of 2 mice were fed 10,000 oocysts each from each of the 3 treatment groups. All inoculated mice developed toxoplasmosis indicating that oocysts were capable of sporulating in seawater. Survival of sporulated oocysts was examined by placing sporulated T. gondii oocysts in 15 ppt seawater at room temperature 22–24 C (RT) or in a refrigerator kept at 4 C. Mice fed oocysts that had been stored at 4C or RT for 6 months became infected. These results indicate that T. gondii oocysts can sporulate and remain viable in seawater for several months.  相似文献   

3.
The consumption of Toxoplasma gondii oocysts on fresh produce may be a means of its transmission to humans. Cats shed T. gondii oocysts, which contaminate produce directly or contaminate water sources for agricultural irrigation and pesticide and fertilizer applications. Cyclospora cayetanensis is a related coccidial parasite, and outbreaks of diarrhea caused by C. cayetanensis have been associated with the ingestion of contaminated raspberries. The oocysts of these coccidians are similar in size and shape, indicating that they may attach to and be retained on produce in a similar manner. In the present study the attachment and survival of T. gondii oocysts on 2 structurally different types of berries were examined. Raspberries and blueberries were inoculated individually with 1.0 x 10(1) to 2.0 x 10(4) oocysts of sporulated T. gondii. Berries inoculated with 2.0 x 10(4) oocysts were stored at 4 C for up to 8 wk. Oocyst viability and recovery were analyzed by feeding processed material to mice. Mice fed T. gondii-inoculated berries stored at 4 C for 8 wk developed acute infections. In other experiments mice fed raspberries inoculated with > or = 1.0 x 10(1) oocysts became infected, whereas only mice fed blueberries inoculated with > or = 1.0 x 10(3) oocysts became infected. This study demonstrates that T. gondii oocysts can adhere to berries and can be recovered by bioassays in mice and that raspberries retain more inoculated oocysts than do blueberries. The results suggest that T. gondii may serve as a model for C. cayetanensis in food safety studies.  相似文献   

4.
Two methods, centrifugation and flocculation, were evaluated to determine their efficiencies of recovery of Toxoplasma gondii oocysts from contaminated water samples. Demineralized and tap water replicates were inoculated with high numbers of sporulated or unsporulated T. gondii oocysts (1 x 10(5) and 1 x 10(4) oocysts). The strain, age, and concentration of the seeded oocysts were recorded. Oocysts were recovered either by centrifugation of the contaminated samples at various g values or by flocculation with two coagulants, Fe(2)(SO(4))(3) and Al(2)(SO(4))(3). The recovery rates were determined with the final pellets by phase-contrast microscopy. Sporulated oocysts were recovered more effectively by flocculation with Al(2)(SO(4))(3) (96.5% +/- 21.7%) than by flocculation with Fe(2)(SO(4))(3) (93.1% +/- 8.1%) or by centrifugation at 2,073 x g (82.5% +/- 6.8%). For the unsporulated oocysts, flocculation with Fe(2)(SO(4))(3) was more successful (100.3% +/- 26.9%) than flocculation with Al(2)(SO(4))(3) (90.4% +/- 19.1%) or centrifugation at 2,565 x g (97.2% +/- 12.5%). The infectivity of the sporulated oocysts recovered by centrifugation was confirmed by seroconversion of all inoculated mice 77 days postinfection. These data suggest that sporulated Toxoplasma oocysts purified by methods commonly used for waterborne pathogens retain their infectivity after mechanical treatment and are able to induce infections in mammals. This is the first step in developing a systematic approach for the detection of Toxoplasma oocysts in water.  相似文献   

5.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 100 free-range chickens (Gallus domesticus) from Sri Lanka was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 39 chickens with titers of 1:5 in 8, 1:10 in 8, 1:20 in 4, 1:40 in 5, 1:80 in 5, 1:160 in 5, 1:320 in 2, 1:640 or more in 2. Hearts and brains of 36 chickens with MAT titers of 1:5 or more were bioassayed in mice. Tissues of 3 chickens with doubtful titers of 1:5 were pooled and fed to a cat; the cat shed T. gondii oocysts in its feces. Tissues from 61 chickens with titers of less than 1:5 were pooled and fed to 2 T. gondii-free cats; the cats did not shed oocysts. Toxoplasma gondii was isolated from 11 of 36 seropositive chickens by bioassay in mice. All 12 T. gondii isolates were avirulent for mice. Genotyping of 12 isolates using the SAG2 locus indicated that 6 were type III, and 6 were type II. This is the first report of genetic characterization of T. gondii from any host in Sri Lanka.  相似文献   

6.
Prevalence of Toxoplasma gondii infection in chickens is a good indicator of the strains prevalent in their environment because they feed from ground. The prevalence of T. gondii was determined in 118 free-range chickens from 14 counties in Ohio and in 11 chickens from a pig farm in Massachusetts. Toxoplasma gondii antibodies (> or = 1: 5) were found using the modified agglutination test (MAT) in 20 of 118 chickens from Ohio. Viable T. gondii was recovered from 11 of 20 seropositive chickens by bioassay of their hearts and brains into mice. The parasite was not isolated from tissues of 63 seronegative (< or = 1:5) chickens by bioassay in cats. Hearts, brains, and muscles from legs and breast of the 11 chickens from the pig farm in Massachusetts were fed each to a T. gondii-negative cat. Eight cats fed chicken tissues shed oocysts; the 3 cats that did not shed oocysts were fed tissues of chickens with MAT titers of 1:5 or less. Tachyzoites of 19 isolates of T. gondii from Ohio and Massachusetts were considered avirulent for mice. Of 19 isolates genotyped, 5 isolates were type II and 14 were type III; mixed types and type I isolates were not found.  相似文献   

7.
Twenty-three striped skunks (Mephitis mephitis) without demonstrable antibodies in 1:25 serum dilution in the modified agglutination test (MAT) were fed sporulated Toxoplasma gondii oocysts (9 skunks) or tissue cysts (10 skunks), and 4 skunks (controls) were not fed T. gondii. Skunks were bled before feeding T. gondii, 10 and 23- 25 days postinoculation (PI). All 9 seronegative skunks fed oocysts died of acute toxoplasmosis between 7 and 19 days PI; T. gondii tachyzoites were found in histological sections of many tissues. One of the 10 skunks fed tissue cysts and 1 of the 4 controls also died of acute toxoplasmosis days 19 and 20 PI; these animals probably became infected by ingestion of unexcysted oocysts passed in feces of skunks fed oocysts that were housed in the same room that skunks fed tissue cysts were housed. The remaining 9 skunks fed tissue cysts and the 3 controls developed only a mild illness and were killed in good health on days 23-25 PI. Antibodies to T. gondii were not found in 1:25 serum dilution of any of the 19 of 23 skunks that were alive on day 10 PI; 12 of 13 skunks had antibodies (MAT 1:80 or higher) on the day they were killed. Antibodies were not found in 1 skunk. Results indicate that skunks can develop IgG antibodies to T. gondii within 3 wk PI, and primary toxoplasmosis can be fatal in skunks.  相似文献   

8.
The protozoan parasite Toxoplasma gondii is increasingly recognized as a waterborne pathogen. Infection can be acquired by drinking contaminated water and conventional water treatments may not effectively inactivate tough, environmentally resistant oocysts. The present study was performed to assess the efficacy of 2 commonly used chemicals, sodium hypochlorite and ozone, to inactivate T. gondii oocysts in water. Oocysts were exposed to 100 mg/L of chlorine for 30 min, or for 2, 4, 8, 16, and 24 hr, or to 6 mg/L of ozone for 1, 2, 4, 8, or 12 min. Oocyst viability was determined by mouse bioassay. Serology, immunohistochemistry, and in vitro parasite isolation were used to evaluate mice for infection. Initially, mouse bioassay experiments were conducted to compare the analytical sensitivity of these 3 detection methods prior to completing the chemical inactivation experiments. Toxoplasma gondii infection was confirmed by at least 1 of the 3 detection methods in mice inoculated with all doses (10(5)-10(0)) of oocysts. Results of the chemical exposure experiments indicate that neither sodium hypochlorite nor ozone effectively inactivate T. gondii oocysts, even when used at high concentrations.  相似文献   

9.
The prevalence of viable Toxoplasma gondii was determined in 6,282 samples (2,094 each of beef, chicken, and pork) obtained from 698 retail meat stores from 28 major geographic areas of the United States. Each sample consisted of a minimum of 1 kg of meat purchased from the retail meat case. To detect viable T. gondii, meat samples were fed to T. gondii-free cats and feces of cats were examined for oocyst shedding. Initially, 100 g of meat from 6 individual samples of a given species were pooled (total, 600 g), fed to a cat over a period of 3 days, and feces were examined for oocysts for 14 days; the remaining meat samples were stored at 4 C for 14 days (until results of the initial cat fecal examination were known). When a cat fed pooled samples had shed oocysts, 6 individual meat samples from each pool were bioassayed for T. gondii in cats and mice. Toxoplasma gondii isolates were then genetically characterized using the SAG2 locus and 5 hypervariable microsatellite loci. In all, 7 cats fed pooled pork samples shed oocysts. Toxoplasma gondii oocysts were detected microscopically in the feces of 2 of the cats; 1 isolate was Type II and the second was Type III. Analyzed individually, T. gondii was detected by bioassay in 3 of the 12 associated samples with genetic data indicating T. gondii isolates present in 2. The remaining 5 pooled pork samples had so few oocysts that they were not initially detected by microscopic examination, but rather by mouse bioassay of cat feces. Two were Type I, 1 was Type II, and 2 were Type III. None of the cats fed chicken or beef samples shed oocysts. Overall, the prevalence of viable T. gondii in retail meat was very low. Nevertheless, consumers, especially pregnant women, should be aware that they can acquire T. gondii infection from ingestion of undercooked meat, and in particular, pork. Cooking meat to an internal temperature of 66 C kills T. gondii.  相似文献   

10.
Toxoplasma gondii was isolated from a feral guinea fowl (Numida meleagris) and domestic rabbits (Oryctologus cuniculus) from Brazil for the first time. Serum and brains from 10 guinea fowl and 21 rabbits from Brazil were examined for T. gondii infection. Antibodies to T. gondii were found in 2 of 10 fowl and 2 of 21 rabbits by the modified agglutination test (titer 1∶25 or higher). Viable T. gondii (designated TgNmBr1) was isolated from 1 of the 2 seropositive fowl by bioassay in mice but not from the 8 seronegative fowl by bioassay in cat. Viable T. gondii was isolated from both seropositive rabbits (designated TgRabbitBr1, TgRabbitBr2) by bioassay in mice from 1 and by bioassay in cat from the other. The TgRabbitBr1 strain was highly virulent for out-bred mice; mice fed 1 infective oocyst died of acute toxoplasmosis. The remaining 2 isolates were relatively avirulent for mice; lethal dose for mice was 10,000 oocysts. All 3 isolates were grown in cell culture, and tachyzoite-derived DNA were genotyped using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). The TgNmBr1 was found to be clonal Type II, a rare finding in Brazil in any host. The rabbit isolates were atypical, similar to isolates from cats from Brazil (TgRabbitBr1 was identical to TgCatBr5, and TgRabbitBr2 was identical to TgCatBr1, a common genotype in Brazil denoted type BrII). This is the first genetic characterization of T. gondii isolates from the rabbits and guinea fowl in Brazil and the first host record for T. gondii in the guinea fowl.  相似文献   

11.
Cats are important in the epidemiology of Toxoplasma gondii because they are the only hosts that excrete environmentally resistant oocysts in feces. In the present study, 158 feral cats from Giza, Egypt, were examined for T. gondii infection. Antibodies to T. gondii were found in 97.4% with the modified agglutination test. Viable T. gondii was isolated from tissues (brain, heart, tongue) of 115 of 137 cats by bioassay in mice. These isolates were designated TgCatEg 1-115; none of these isolates was virulent to out-bred Swiss Webster mice. Of the 112 seropositive cats whose tissues were bioassayed individually, T. gondii was isolated from the hearts of 83 (74.1%), tongues of 53 (47.3%), and brains of 36 (32.1%). Toxoplasma gondii oocysts were not detected in rectal contents of any of the 158 cats, probably related to high seropositivity (chronic infection) of cats surveyed. The high prevalence of T. gondii in feral cats in Egypt reported here indicates a high environmental contamination with oocysts.  相似文献   

12.
The tachyzoite-induced cycle of Toxoplasma gondii was studied in 46 cats. Tachyzoites of the M-7741 or Me-49 strain of T. gondii were administered orally to cats by pouring into the mouth or by stomach tube, or by intraintestinal inoculation. Ten weaned cats that had been inoculated with tachyzoites directly in the intestine were killed 1, 3, 6, 9, 12, 15, 18, or 25 days later, and their tissues were studied histologically and bioassayed in mice. Toxoplasma gondii was demonstrable in the blood of 8 cats and in other tissues of all these 10. Four out of five 1- to 8-day-old cats fed tachyzoites by stomach tube became infected with T. gondii, and 1 became ill because of toxoplasmosis. All 19 weaned cats fed tachyzoites (poured into the mouth) became infected, and 6 died of acute toxoplasmosis 9-15 days after being fed T. gondii. Six out of 12 weaned cats fed tachyzoites by stomach tube became infected but were asymptomatic. Overall, 12 out of 26 cats observed for 19 days or more shed oocysts with a prepatent period (pp) of 19 days or more, with the sole exception of 1 cat that shed oocysts with a pp of 5 days. Enteroepithelial stages of T. gondii were not found in any cat before oocysts were shed. Cats shed up to 360 million oocysts in a day, and oocysts were shed for 4-6 days.  相似文献   

13.
Antibodies to Toxoplasma gondii were determined in sera from 222 coyotes (Canis latrans), 283 red foxes (Vulpes vulpes), and 97 gray foxes (Urocyon cinereoargenteus) from Indiana, Kentucky, Michigan, and Ohio during 1990-1993. Sera were examined in 1:25, 1:100, and 1:500 dilutions by the modified direct agglutination test (MAT) with formalinized whole tachyzoites plus mercaptoethanol. Antibodies were found in 131 (59.0%) of 222 coyotes, 243 (85.9%) of 283 red foxes, and 73 (75.3%) of 97 gray foxes. Antibodies were also measured by different serologic tests in 4 littermate T. gondii-free red foxes fed T. gondii tissue cysts or oocysts; the fifth littermate fox was not fed T. gondii. Antibodies were measured in fox sera obtained 0, 14, and 36-55 days after infection with T. gondii. All 4 foxes fed T. gondii developed MAT and dye test antibody titers of 1:200 or more 14 days later. The latex agglutination test (LAT) and indirect hemagglutination test (IHAT) were less sensitive than MAT for the diagnosis of T. gondii infection in foxes. Antibodies were not detected by LAT (titer 1:64) in the 2 foxes fed tissue cysts nor by IHAT in 1 of the foxes fed tissue cysts. Toxoplasma gondii was isolated by bioassay in mice from tissues of all 4 foxes fed T. gondii. The control fox had no T. gondii antibodies detectable by any of the serologic tests.  相似文献   

14.
The prevalence of Toxoplasma gondii, in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 46 free-range chickens (Gallus domesticus) from Venezuela was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 16 (32%) chickens with titers of 1:5 in 1, 1:10 in 2, 1:40 in 2, 1:80 in 2, 1:160 in 2, 1:320 in 3, 1: 640 in 2, and 1:1,280 or higher in 2. Hearts, pectoral muscles, and brains of 13 chickens with MAT titers of 1:40 or more were bioassayed individually in mice. Tissues of each of 3 chickens with titers of 1:5 or 1:10 were pooled and bioassayed in mice. Tissues from the remaining 30 seronegative chickens were pooled and fed to 1 T. gondii-free cat. Feces of the cat were examined for oocysts; it did not shed oocysts. Toxoplasma gondii was isolated from 12 of 13 chickens with MAT titers of 1:40 or more. Toxoplasma gondii was isolated from pooled tissues of 1 of 2 chickens with titers of 1:10. Eight of these 13 isolates were virulent for mice. Genotyping of 13 of these isolates using the SAG2 locus indicated that 10 were type III, and 3 were type II. Phenotypically and genetically these isolates were different from T. gondii isolates from North America and Brazil. This is the first report of isolation of T. gondii from chickens from Venezuela.  相似文献   

15.
The prevalence of Toxoplasma gondii in free-ranging chickens (Gallus domesticus) is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. In the present study, prevalence of T. gondii in chickens from Democratic Republic of Congo, Mali, Burkina Faso, and Kenya is reported. The prevalence of T. gondii antibodies in sera of 50 free-range chickens from Congo was 50% based on the modified agglutination test (MAT); antibody titers were 1:5 in 7, 1:10 in 7, 1:20 in 6, 1:40 in 1, and 1:160 or more in 4 chickens. Hearts, pectoral muscles, and brains of 11 chickens with titers of 1:20 or more were bioassayed individually in mice; T. gondii was isolated from 9, from the hearts of 9, brains of 3, and muscles of 3 chickens. Tissues of each of the 14 chickens with titers of 1:5 or 1:10 were pooled and bioassayed in mice; T. gondii was isolated from 1 chicken with a titer of 1:10. Tissues from the remaining 25 seronegative chickens were pooled and fed to 1 T. gondii-free cat. Feces of the cat were examined for oocysts, but none was seen. The results indicate that T. gondii localizes in the hearts more often than in other tissues of naturally infected chickens. Genotyping of these 10 isolates using the SAG2 locus indicated that 8 were isolates were type III, 1 was type II, and 1 was type I. Two isolates (1 type I and 1 type III) were virulent for mice. Toxoplasma gondii was isolated by mouse bioassay from a pool of brains and hearts of 5 of 48 chickens from Mali and 1 of 40 chickens from Burkina Faso; all 6 isolates were avirulent for mice. Genetically, 4 isolates were type III and 2 were type II. Sera were not available from chickens from Mali and Burkina Faso. Toxoplasma gondii antibodies (MAT 100 or more) were found in 4 of 30 chickens from Kenya, and T. gondii was isolated from the brain of 1 of 4 seropositive chickens; this strain was avirulent for mice and was type II. This is the first report on isolation and genotyping of T. gondii from any source from these 4 countries in Africa.  相似文献   

16.
White mice previously infected with 10(2), 10(3) or 10(4) Eimeria falciformis oocysts on days 0, 5, 10 or 30 were inoculated per os with 10(1), 10(2), 10(3) or 10(4) Toxoplasma oocysts. While the results obtained for mice with higher Toxoplasma inocula were consistent, animals with 10(1) and 10(2) oocysts previous inoculation with Eimeria showed important differences related with those infected only with Toxoplasma. For example, survival time was higher in animals infected with both parasites, especially if inoculated with Eimeria 30 days before Toxoplasma infection. Furthermore the number of T. gondii cysts found in the animals previously infected with Eimeria was lower compared with mice inoculated with Toxoplasma only. Body weight of mice infected with Toxoplasma previous infection with Eimeria was almost normal in relation to those infected only with Toxoplasma, indicating a probable pathological effect due to the parasite, more evident in "non immunized" mice.  相似文献   

17.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii antibodies in sera of 50 free-range chickens (Gallus domesticus) from Peru was 26% on the basis of the modified agglutination test (MAT). Hearts, pectoral muscles, and brains of seropositive (MAT > or =1:5) chickens were bioassayed individually in mice. Tissues from the remaining 37 seronegative chickens were pooled and fed to 2 T. gondii-free cats. Feces of cats were examined for oocysts; they did not shed oocysts. Toxoplasma gondii was isolated from the hearts of 10 seropositive chickens but not from their brains and pectoral muscles. Genotyping of these isolates using the SAG2 locus indicated that 7 isolates were type I and 3 were type III. Six of the 7 type-I isolates were avirulent for mice, which was unusual because type-I isolates are considered virulent for mice. The T. gondii isolates were from chickens from different properties that were at least 200 m apart. Thus, each isolate is likely to be different. This is the first report of isolation of T. gondii from chickens from Peru.  相似文献   

18.
Pectoral muscles from a captive keel-billed toucan (Ramphastos sulfuratus) from Costa Rica were fed to a Toxoplasma gondii-free cat, and the cat shed oocysts. Laboratory mice fed these oocysts developed antibodies to T. gondii in their sera and T. gondii tissue cysts in their brains. The DNA extracted from the brains of infected mice was characterized using 10 polymerase chain reaction-restricted fragment length polymorphic markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). The isolate designated TgRsCrl was found to be non-clonal with Type I, II, and III alleles at different loci. This is the first isolation of T. gondii from this host.  相似文献   

19.
The prevalence of Toxoplasma gondii in 118 unwanted dogs from S?o Paulo City, S?o Paulo State, Brazil, was determined. Antibodies to T. gondii were assayed by the modified agglutination test and found in 42 (35.8%) dogs, with titers of 1:20 in 10, 1:40 in 6, 1:80 in 5, 1:160 in 5, 1:320 in 6, 1:640 in 7, and 1:1,280 or higher in 3. Hearts and brains of 36 seropositive dogs were bioassayed in mice, or cats, or both. Tissues from 20 seropositive dogs were fed to 20 T. gondii-free cats. Feces of cats were examined for oocysts. Toxoplasma gondii was isolated from 15 dogs by a bioassay in mice, from the brain alone of 1, from the heart alone of 4, and from both brains and hearts of 10. All infected mice from 5 of 15 isolates died of toxoplasmosis during primary infection. Four additional isolates were obtained by bioassay in cats. Genotyping of these 19 T. gondii isolates using polymorphisms at 10 nuclear markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and a new SAG2 (an apicoplast marker Apico) revealed 12 genotypes. One isolate had Type III alleles at all 11 loci, and the remaining 18 isolates contained a combination of different alleles and were divided into 11 genotypes. The absence of Type II in Brazil was confirmed. The result supports previous findings that T. gondii population genetics is highly diverse in Brazil.  相似文献   

20.
We describe the use of a cesium chloride (CsCl) gradient as an improvement for the purification of Toxoplasma gondii oocysts from concentrated suspensions. After concentration by sucrose flotation, this technique gives a > 96% recovery of very pure unsporulated or sporulated oocysts, but requires "fresh" oocysts (< or = 10 weeks of age). This material is suitable for biochemical and immunological analyses of environmentally resistant T. gondii oocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号