首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of long-term daily intake of mercury on its urinary and fecal excretion, whole-body retention, and blood concentration in male rats were observed. The animals were exposed to mercuric chloride labeled with 203Hg via drinking water for 8 weeks (5, 50 and 500 m Hg). 203Hg in urine, feces and blood was quantified. The blood mercury concentration did not keep a linear relationship with the increasing dose. The percentage of the total amount of mercury intake which is excreted by the fecal route in rats exposed to 500 m Hg was significantly lower than in those exposed to 5 and 50 m. The daily dose percentage of mercury excreted in urine increased with dose size. The results show that the absorption fraction of mercury through the gastrointestinal tract (30–40%) was higher than values previously reported.  相似文献   

2.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

3.
With continuous and ultimately lethal exposure of eggs ofboophilus microplus to mercury vapour, respiration and non-protein thiol decreased to low levels. With sub-lethal exposure, respiration decreased initially and then increased, whereas non-protein thiol (largely glutathione) increased initially and then decreased. This initial increase in glutathione (GSH) which probably resulted from an attempt by the organism to control or reverse the biochemical lesion, did not arise from the oxidized form (gssg) through a shift in the equilibrium from right to left thus: 2gshgssg+2H++2e.The significance of the results are discussed in relation to theories ofgsh function and of Hg toxicity. The possible application of mercurials in tick control is discussed.  相似文献   

4.
Summary Diffusion of inorganic mercury (Hg2+) through planar lipid bilayer membranes was studied as a function of chloride concentration and pH. Membranes were made from egg lecithin plus cholesterol in tetradecane. Tracer (203Hg) flux and conductance measurements were used to estimate the permeabilities to ionic and nonionic forms of Hg. At pH 7.0 and [Cl] ranging from 10–1000mm, only the dichloride complex of mercury (HgCl2) crosses the membrane at a significant rate. However, several other Hg complexes (HgOHCl, HgCl 3 and HgCl 4 2– ) contribute to diffusion through the aqueous unstirred layer adjacent to the membrane. The relation between the total mercury flux (J Hg), Hg concentrations, and permeabilities is: 1/J Hg=1/P ul[Hg t ]+1/P m [HgCl2], where [Hg t ] is the total concentration of all forms of Hg,P ul is the unstirred layer permeability, andP m is the membrane permeability to HgCl2. By fitting this equation to the data we find thatP m =1.3×10–2 cm sec–1. At Cl concentrations ranging from 1–100mm, diffusion of Hg t through the unstirred layer is rate limiting. At Cl concentrations ranging from 500–1000mm, the membrane permeability to HgCl2 becomes rate limiting because HgCl2 comprises only about 1% of the total Hg. Under all conditions, chemical reactions among Hg2+, Cl and/or OH near the membrane surface play an important role in the transport process. Other important metals, e.g., Zn2+, Cd2+, Ag+ and CH3Hg+, form neutral chloride complexes under physiological conditions. Thus, it is likely that chloride can facilitate the diffusion of a variety of metals through lipid bilayer and biological membranes.  相似文献   

5.
The study aimed at determining the degree of mercury contamination of mallards, game waterbirds migrating from the regions of the unknown degree of contamination and establishing whether the consumption of their meat comprises a hazard to human health in view of the binding norms concerning the mercury content in food products. The investigations were carried out on 30 mallards shot during the duck shooting season in which mercury concentrations in the muscles, liver, and kidneys were determined using the cold vapor atomic absorption spectrometry (CV-AAS) method. The mean Hg concentration in the investigated tissues in all birds studied amounted to 0.110, 0.154, and 0.122 mg kg?1 for the muscles, kidneys, and liver, respectively. The study indicated statistically significant (p ≤ 0.01) positive correlation between all of the organs examined. Animals were divided into two groups differing in both absolute values of Hg concentrations and those measured in individual tissues. In particular organs of birds representing the first group, the presence of highly significant correlation (p ≤ 0.01) was observed in all organs examined. In the second group, highly significant positive correlation between Hg concentrations in the liver and kidneys and highly significant negative dependence between the liver and muscles was noted. The examinations revealed that some birds must have come from regions of a high degree of mercury contamination.  相似文献   

6.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

7.
Summary Micromolar concentrations of silver ion activate large Ca2+ fluxes across the plasma membrane of intact rod outer segments isolated from bovine retinas (intact ROS). The rate of Ag+-induced Ca2+ efflux from intact ROS depended on the Ag+ concentration in a sigmoidal manner suggesting a cooperative mechanism with a Hill coefficient between 2 and 3. At a concentration of 50 m Ag+ the rate of Ca2+ efflux was 7×106 Ca2+/outer segment/sec; this represents a change in total intracellular Ca2+ by 0.7mm/outer segment/sec. Addition of the nonselective ionophore gramicidin in the absence of external alkali cations greatly reduced the Ag+-induced Ca2+ efflux from intact ROS, apparently by enabling internal alkali cations to leak out. Adding back alkali cations to the external medium restored Ag+-induced Ca2+ efflux when gramicidin was present. In the presence of gramicidin, Ag+-induced Ca2+ efflux from intact ROS was blocked by 50 m tetracaine orl-cis diltiazem, whereas without gramicidin both blockers were ineffective. Bothl-cis diltiazem and tetracaine are blockers of one kinetic component of cGMP-induced Ca2+ flux across ROS disk membranes. The ion selectivity of the Ag+-induced pathway proved to be broad with little discrimination between the alkali cations Li+, Na+, K+, and Cs+ or between Ca2+ and Mg2+. The properties of the Ag+-induced pathway(s) suggest that it may reflect the cGMP-dependent conductance opened in the absence of cGMP by silver ions.  相似文献   

8.
In order to study the metabolism of mercury (Hg), its affinity to metallothionein (MT), and its influence on levels of the essential metals copper and zinc in the brain tissue of rats exposed to elemental mercury (HgO) vapor was investigated. The major findings were:
1.  After long-term exposure, about 40% of mercury was found in the brain water-soluble phase (supernatant);
2.  In brain supernatant, about 80% of Hg was found in the range of low-molecular-weight proteins; the MT-like protein Hg−Cu−Zn-thionein was isolated and partially characterized;
3.  HgO vapor exposure resulted in increased tissue levels of essential Cu and Zn in addition to exogenous Hg; and
4.  Experiments showed that HgO vapor exposure can induce the stimulation of rat brain MT synthesis.
A part of this investigation was reported at TEMA 7, Dubrovnik, May 20–25, 1990 (Falnoga et al 1991).  相似文献   

9.
Summary In separated outer medullary collecting duct (MCD) cells, the time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to the MCD cell analog of band 3, the red blood cell (rbc) anion exchange protein, can be measured by the stopped-flow method and the reaction time constant, DBDS, can be used to report on the conformational state of the band 3 analog. In order to validate the method we have now shown that the ID50,DBDS,MCD (0.5±0.1 m) for the H2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is in agreement with the ID50,Cl ,MCD (0.94±0.07 m) for H2-DIDS inhibition of MCD cell Cl flux, thus relating DBDS directly to anion exchange. The specific cardiac glycoside cation transport inhibitor, ouabain, not only modulates DBDS binding kinetics, but also increases the time constant for Cl exchange by a factor of two, from Cl=0.30±0.02 sec to 0.56±0.06 sec (30mm NaHCO3). The ID50,DBDS,MCD for the ouabain effect on DBDS binding kinetics is 0.003±0.001 m, so that binding is about an order of magnitude tighter than that for inhibition of rbc K+ flux (K I,K +,rbc=0.017 m). These experiments indicate that the Na+,K-ATPase, required to maintain cation gradients across the MCD cell membrane, is close enough to the band 3 analog that conformational information can be exchanged. Cytochalasin E (CE), which binds to the spectrin/actin complex in rbc and other cells, modulates DBDS binding kinetics with a physiological ID50,DBDS,MCD (0.076±0.005 m); 2 m CE also more than doubles the Cl exchange time constant from 0.20±0.04 sec to 0.50±0.08 sec (30mm NaHCO3). These experiments indicate that conformational information can also be exchanged between the MCD cell band 3 analog and the MCD cell cytoskeleton.  相似文献   

10.
Summary The properties of two sodium-dependentd-glucose transporters previously identified in renal proximal tubule brush border membrane (BBM) vesicles are studied. The low-affinity system, found in BBM vesicles from the outer cortex (early proximal tubule), is shown to be associated with the high-affinity phlorizin binding site typically found in renal BBM preparations. The high-affinity system, found in BBM vesicles from the outer medulla (late proximal tubule), is almost two orders of magnitude less sensitive to inhibition by phlorizin and is apparently not associated with high-affinity phlorizin binding. The sodium/g;ucose stoichiometry of the outer medullary transporter is found to be 21 by two independent methods. Previous measurements have established that the stoichiometry of the outer cortical system is 11. It is suggested that this arrangement of transporters in series along the proximal tubule enables the kidney to reabsorb glucose from the urine in an energy-efficient fashion. The bulk of the glucose load is reabsorbed early in the proximal tubule at an energetic cost of one Na+ per glucose molecule. Then in the late proximal tubule a larger coupling ratio and hence a larger driving force is employed to reabsorb the last traces of glucose from the urine.  相似文献   

11.
Membranes prepared from cerebellar granule cells and cortical astrocytes exhibited specific, saturable binding ofl-[3H]glutamate. The apparent binding constant K d was 135 nM and 393 nM and the maximal binding capacity Bmax 42 and 34 mol/kg in granule cells and astrocytes, respectively. In granule cells the binding was strongly inhibited by the glutamate receptor agonists kainate, quisqualate, N-methyl-d-aspartate (NMDA),l-homocysteate and ibotenate, and the antagonistdl-5-aminophosphonovalerate. In astrocytes, only quisqualate among these was effective.l-Aspartate,l-cysteate,l-cysteinesulphinate and -d-glutamylglycine were inhibitors in both cell types. The binding was totally displaced in both cell types byl-cysteinesulphinate with IC50 in the micromolar range. In astrocytes the binding was also totally displaced by quisqualate, but in granule cells only partially by NMDA, kainate and quisqualate in turn. It is concluded from the relative potencies of agonists and antagonists in [3H]glutamate binding that cerebellar granule cells express the NMDA, kainate and quisqualate types of the glutamate receptor, while only the quisqualate-sensitive binding seems to be present in cortical astrocytes.  相似文献   

12.
Summary The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) eq cm–2hr–1, andI sc, 0.50±0.50(8) eq cm–2hr–1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 21 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.  相似文献   

13.
Summary We examined the interactions of cAMP-dependent protein kinase and varying aqueous Cl concentrations in modulating the activity of Cl channels obtained by fusing basolaterally enriched renal outer medullary vesicles into planar lipid bilayers. Under the present experimental conditions, thecis andtrans solutions face the extracellular and intracellular aspects of these Cl channels, respectively. Raising thetrans Cl concentration from 2 to 50mm increased the channel open-time probability, raised the unit channel conductance, and affected the voltage-independent determinant (G) of channel activity but not the gating charge (Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990.J. Membrane Biol. 118:269–278). With 2mm trans KCl,trans addition of the catalytic subunit of PKA (C-PKA) plus ATP increased channel open-time probability and altered the voltage-independent determinant of channel activity without affecting either unit channel conductance or gating charge. The effect was ATP specific, did not occur with (C-PKA plus ATP) addition tocis solutions, and was abolished by denaturing C-PKA. Finally, (C-PKA plus ATP) activation of channel activity was not detected with relatively high (50mm)trans Cl concentrations. These data indicate that (C-PKA plus ATP) might modulate Cl channel activity by phosphorylation at or near the Cl-sensitive site on the intracellular face of these channels.  相似文献   

14.
Summary The specific binding of [3H]cortisol to plasma membranes purified from mouse liver, studied by the ultrafiltration method, shows the existence of specific binding sites for cortisol. The kinetic parameters of this binding areK D=4.4nm andB max=685 fmol/mg protein in presence of 1 m of corticosterone. With respect to the binding of 4nm [3H]cortisol to the membrane, the affinities of the steroids decreased in the following order: deoxycorticosterone>corticosterone>progesterone>cortisol >prednisolone>testosterone>20-hydroxyprogesterone >cortisone. Estradiol, dexamethasone, ouabain and triamcinolone acetonide do not have affinity for this binding site. Neither Ca2+ nor Mg2+ affected the binding of [3H]cortisol to the plasma membranes. Likewise, the presence of agonists and antagonists of alpha and beta-adrenergic receptors did not modify the binding of [3H]cortisol. The results suggest that the plasma membrane binding site characterized is more specific for corticoids and is different from nuclear glucocorticoid and progesterone receptors.  相似文献   

15.
Summary The equilibrium binding mechanism and kinetics of binding of diS–C3-(5) (3,3-dipropylthiodicarbocyanine iodide) to rabbit renal brush-border membrane vesicles (BBMV) were examined using steady-state and time-resolved fluorescence, and fluorescence stopped-flow methods. In aqueous solution, diS–C3-(5) exists as a monomer at concentrations <5 m with fluorescence emission peak at 670 nm (excitation 622 nm), anisotropyr=0.102, and lifetime =1.2 nsec (23°C). Upon addition of increasing BBMV (voltage clamped to 0 mV using K+/valinomycin), the 670 nm emission peak decreases, corresponding to formation of a nonfluorescent membrane dimer, and subsequently a new emission peak at 695 nm increases, corresponding to membrane monomer. Dynamic depolarization studies show that aqueous diS–C3-(5) rotation is unhindered with a rotational rateR=0.57 nsec–1 while membrane monomer is hindered with steady-state anisotropyr=0.190, lifetime =2.1 nsec,R=0.58 nsec–1 and limiting anisotropyr =0.11. Based on equilibrium fluorescence titrations, the membrane monomer-dimer (M-D) dissociation constant,K d=[M]2/[D][BBMV], is 0.0013, where BBMV is expressed as membrane phospholipid concentration. Three distinct kinetic processes are identified by stopped-flow experiments in which BBMV are mixed with diS–C3-(5). There is rapid binding of diS–C3-(5) to the membrane to form bound monomer with a 6-msec exponential time constant. The membrane monomer at the membrane outer surface then aggregates to form bound dimer at the outer surface with a concentration independent time constant of 30 msec. The overall dimerization reaction probably consists of a rate-limiting reorientation process (30 msec) followed by a rapid dimerization which occurs on a nanosecond time scale. Finally, there is a 0.8 to 1 sec translocation of membrane dimer between symmetric sites at the inner and outer membrane surfaces. The translocation reaction is the step which is probably sensitive to changes in transmembrane electrical potential.  相似文献   

16.
Murine resident macrophages express, on their surface, carbohydrate epitopes which undergo changes during their stimulation/activation as monitored by binding of125I labelledEvonymus europaea andGriffonia simplicifolia I-B4 lectins. Treatment of the stimulated macrophages with coffee bean -galactosidase abolished binding of the GS I-B4 isolectin and changed the binding pattern of theEvonymus lectin. The affinity (K a) ofEvonymus lectin for -galactosidase-treated macrophages decreased approximately 23-fold, from 1.25×108 M–1 to 5.5×106 M–1. Subsequent digestion of -galactosidase-treated macrophages with -l-fucosidase fromTrichomonas foetus, further reduced binding ofEvonymus lectin. Resident macrophages showed the same pattern ofEvonymus lectin binding, with the same affinity, as -galactosidase-treated, stimulated macrophages. These results, together with a consideration of the carbohydrate binding specificity of theEvonymus lectin which, in the absence of -d-galactosyl groups, requires -l-fucosyl groups for binding, indicate the presence, on resident macrophages, of glycoconjugates with terminal -l-fucosyl residues. It is also concluded that during macrophage stimulation/activation -d-galactosyl residues are added to this glycoconjugate and that they form part of the receptor forEvonymus lectin. The same glycoconjugate(s) is/are also expressed on the activated macrophage IC-21 cell line which exhibits the same characteristics as that of stimulated peritoneal macrophages, i.e., it contains -d-galactosyl end groups and is resistant to the action of trypsin. Both lectins were also specifically bound toCorynaebacterium parvum activated macrophages.Abbreviations BSA bovine serum albumin - GS I-B4 Griffonia simplicifolia I-B4 isolectin - PBS 0.01m phosphate buffer (pH 7.1) with 0.15m NaCl (unless stated otherwise this buffer contained 3mm azide and was free of divalent cations) - PMSF phenyl methane sulfonyl fluoride - TG thioglycollate brewers medium.  相似文献   

17.
The tritiated 1 antagonist prazosin [3H]PRZ binds specifically and with high affinity to postsynaptic adrenoceptors in membrane preparations from cerebral cortex. Since adrenoceptors are of protein nature, it was of interest of investigate the possible role of disulfide (—SS—) and sulfhydril (—SH) groups in the binding of [3H]PRZ. Pretreatment of the membranes with the disulfide and sulfhydryl reactivesdl0Dithiothreitol,l-Dithiothreitol, Dithioerythritol or 5,5-Dithiobis-(2-nitrobenzoic acid) (DTNB), alone or in combination with the alkylating agent N-Methylmaleimide (NMM), decreased specific [3HPRZ binding, with minor changes in the non-specific counts. Saturation experiments revealed that all these reagents reduced the affinity of the binding site for [3H]PRZ, as judged by theK d 25°C, but only the alkylating agent NMM and the oxydizing reagent DTNB produced in addition to the increase inK d, a decrease of the maximum binding capacity (B max). The present results provide evidence for a participation of—SS—and/or—SH groups in the recognition site of the 1-adrenoceptor of cerebral cortex.  相似文献   

18.
Summary The fluorescence enhancement of 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) upon binding to membranes was used to examine proximal tubule stilbene binding sites. Equilibrium binding studies of DBDS to renal brush border (BBMV) and basolateral membrane vesicles (BLMV) were performed using a fluorescence enhancement technique developed for red blood cells (A.S. Verkman, J.A. Dix and A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). In the absence of transportable anions, DBDS bound reversibly to a single class of sites on BLMV isolated from rabbit (K d =3.8 m) and rat (3.2 m); 100 m dihydro-4,4-diisothiocyano-2,2-disulfonic stilbene (H2DIDS) blocked >95% of binding. H2DIDS inhibitable DBDS binding was not detected using rat or rabbit BBMV. In rabbit BLMV, DBDSK d doubled with 10mm SO4, 50mm HCO3 and 100mm Cl, but was not altered by Na or pH (6–8). In stopped-flow experiments the exponential time constant for DBDS binding slowed with SO4, HCO3 and Cl, but was unaffected by Na. These results are consistent with competitive binding of DBDS and anions at an anion transport site. To relate DBDS binding data to anion transport inhibition we used35SO4 uptake to characterize several modes of rabbit BLM anion transport: H/SO4 and Na/SO4 cotransport, and Cl/SO4 countertransport. Each transport process was electroneutral and was inhibited by H2DIDS, furosemide, probenecid, chlorothiazide and DBDS. The apparentK t 's for DBDS (3–20 m) were similar toK d for DBDS binding. These studies define a class of anion transport sites on the proximal tubule basolateral membrane measureable optically by a fluorescent stilbene.  相似文献   

19.
The effect of treatment with alpha-mercapto-beta-(2-furyl)acrylic acid (MFA), N-(N-mercaptopropionyl) glycine (MPG) and N-acetylcysteine (NAC) compared to spironolactone (SPL), a steroid, before and after 203 mercury (II) exposure, on the disposition of Hg and induction of tissue metallothionein (MT), was investigated in rats. The pretreatment with SPL, MFA and MPG enhanced faecal elimination of Hg and reduced its accumulation in liver particularly, the "heat stable fraction" resulting in lowered hepatic MT induction. Neither the renal uptake of Hg nor induction of tissue MT was affected by pre-treatment with the chelating agents; SPL and MFA causing re-distribution of Hg among the renal sub-cellular fractions. The post-Hg exposure treatment with MFA enhanced the faecal and MPG the urinary excretion of Hg. However, both the chelating agents increased the hepatic burden of Hg as reflected in the subcellular fractions and increased MT contents indicating mobilization of Hg from other tissue binding sites. The post-treatment with MPG however, depleted renal Hg as reflected by the sub-cellular distribution, without affecting renal MT levels. The results show that MFA and MPG are more promising preventive than therapeutic agents in Hg intoxication acting as metal chelators.  相似文献   

20.
Summary Choline is a quaternary ammonium compound that is normally reabsorbed by the renal proximal tubule, despite its acknowledged role as a substrate for the renal organic cation (OC) secretory pathway. The basis for choline reabsorption was examined in studies of transport in rabbit renal brush-border membrane vesicles (BBMV). Although an outwardly directed H+ gradient (pH 6.0in 7.5out) stimulated uptake of tetraethylammonium (TEA), a model substrate of the OC/H+ exchanger in renal BBMV, it had no effect on uptake of 1 m choline. A 5 mm trans concentration gradient of choline did, however, drive countertransport of both TEA and choline, although trans TEA had no effect on choline accumulation in BBMV. A 20 mm concentration of unlabeled choline blocked uptake of both choline and TEA by >85%, whereas 20 mm TEA blocked only TEA uptake. The kinetics of choline uptake into vesicles preloaded with 1 mm unlabeled choline appeared to involve two, saturable transport processes, one of high affinity for choline (K t of 97 m) and a second of low affinity (K t of 10 mm), the latter presumably reflecting a weak interaction of choline with the OC/H+ exchanger. An inside-negative electrical PD stimulated the rate of uptake and supported the transient concentrative accumulation of choline in BBMV. The high affinity transporter showed a marked specificity for choline and closely related analogues. A model of the molecular determinants of substrate-transporter interaction is described. We conclude that the electrogenic high affinity pathway plays a central role in renal reabsorption of choline.We thank Dr. William Dantzler for helpful discussions. This work was supported by grants from the National Institutes of Health (PO1 DK41006) and the Arizona Disease Control Research Commission (82-0701).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号