首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.  相似文献   

2.
There have been many studies on the localization by immunocytochemistry of cytoskeletal proteins in cells cultured in vitro. However, the distribution of cytoskeleton in cells in situ has yet to be elucidated. In the present study we developed an immunohistochemical method for visualizing tubulin and actin in rat hepatocytes in situ, using a perfusion extraction-fixation procedure, in which the liver was perfused through the portal vein with a nonionic detergent to make the plasma membranes permeable to soluble substances, followed by a fixative to preserve cytoskeletal structure. Using the immunogold and peroxidase-antiperoxidase (PAP) staining procedures, we found that in hepatocytes in situ, tubulin was localized in cytoplasmic filamentous networks and in spindle fibers, as in hepatocytes and other cells in vitro. On the other hand, the distribution of actin in hepatocytes in situ was considerably different from that in well-spread hepatocytes and other cells cultured in vitro. In hepatocytes in situ, actin did not form any stress fibers, but was distributed preferentially under the plasma membrane, especially around the bile canaliculi. The perfusion extraction-fixation procedure could be adapted to visualize cytoskeleton in other tissues.  相似文献   

3.
Immunoperoxidase localization of albumin and fibrinogen in rat liver was tested with perfusion or immersion fixation and saponin as a membrane permeabilizing agent. The distribution of albumin- or fibrinogen-containing hepatocytes was examined by light microscopy. Labeled antibody penetration was assessed by electron microscopy on transversely cut cryostat sections. Paraformaldehyde liver fixation by perfusion, followed by incubation of the sections with labeled antibodies together with saponin, demonstrated that albumin and fibrinogen were present in all hepatocytes; mainly in the Golgi apparatus and rarely in the endoplasmic reticulum, the ultrathin sections being labeled throughout their entire thickness. A constant labeling of the endoplasmic reticulum was obtained when saponin was added from the beginning of fixation. In the absence of saponin, albumin was seen in most of the hepatocytes but only at the periphery of the transverse sections, in a few Golgi apparatus, and in some parts of the endoplasmic reticulum; under this condition, fibrinogen was not visualized in the hepatocytes. Paraformaldehyde liver fixation by immersion showed the presence of albumin or fibrinogen in a few hepatocytes only, with irregular labeled antibody penetration. The use of saponin did not improve albumin and fibrinogen localization, except when the liver was poorly fixed. These results show that liver fixation by perfusion gives a homogeneous labeling of all the hepatocytes, whereas fixation by immersion leads to a heterogeneous labeling. Satisfactory results are obtained with saponin, which must be used to improve the penetration of labeled antibodies when the liver is fixed by perfusion. Saponin does not work when immersion is employed, at least under the conditions tested.  相似文献   

4.
The localization of a fetal isoenzyme of aldolase (A) in rat liver cells early after a single injection of carcinogen 4-dimethylaminoazobenzene and its noncarcinogenic analog 4-diethylaminoazobenzene has been studied using the immunofluorescent method. Aldolase A was found in the cytoplasm of oval and "transition" cells. These cells appeared in rat liver as a result of treatment with carcinogen and its analog. In mature hepatocytes aldolase A was not found either in intact rat liver, after the treatment with carcinogen or its analog.  相似文献   

5.
We used immunohistochemistry to identify the localization of monoamine oxidase type B (MAOB) in the rat oxyntic mucosa. At light microscopic levels, MAOB-immunopositive cells were mostly located in the basal half of the oxyntic mucosa. By a double-labeling immunofluorescence method, it was shown that MAOB immunoreactivity was localized in almost all of histidine decarboxylase (HDC)-positive cells. Only a few MAOB-positive cells were negative for HDC. At electron microscopic levels, immunohistochemical reaction products of MAOB were detected on the mitochondrial outer membranes in cells that showed morphological characteristics of enterochromaffin-like (ECL) cells. These findings indicate that ECL cells contain MAOB in the rat. We provide a hypothesis that MAOB is involved in the inactivation mechanism of histamine that is released from ECL cells and activates parietal cells to secrete gastric acid.  相似文献   

6.
CD38 is a type II transmembrane glycoprotein found on both hematopoietic and non-hematopoietic cells. It is known for its involvement in the metabolism of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. It is generally believed that CD38 is an integral protein with ectoenzymatic activities found mainly on the plasma membrane. Here we show that enzymatically active CD38 is present intracellularly on the nuclear envelope of rat hepatocytes. CD38 isolated from rat liver nuclei possessed both ADP-ribosyl cyclase and NADase activity. Immunofluorescence studies on rat liver cryosections and isolated nuclei localized CD38 to the nuclear envelope of hepatocytes. Subcellular localization via immunoelectron microscopy showed that CD38 is located on the inner nuclear envelope. The isolated nuclei sequestered calcium in an ATP-dependent manner. cADPR elicited a rapid calcium release from the loaded nuclei, which was independent of inositol trisphosphate and was inhibited by 8-amino-cADPR, a specific antagonist of cADPR, and ryanodine. However, nicotinic acid adenine dinucleotide phosphate failed to elicit any calcium release from the nuclear calcium stores. The nuclear localization of CD38 shown in this study suggests a novel role of CD38 in intracellular calcium signaling for non-hematopoietic cells.  相似文献   

7.
In foregoing studies, we reported that LGP107, a major lysosomal membrane glycoprotein in the rat liver, distributes in and circulates continuously throughout the endocytic membrane system (endosomes, lysosomes and plasma membrane), in hepatocytes (1,2). In the present study we examined whether acid phosphatase (APase), an enzyme that is transported to lysosomes as a transmembrane protein, passes through the cell surface during intracellular transport, because transport of newly synthesized APase to lysosomes involves the passage of endosomes containing a ligand which is internalized via receptors on the cell surface and is finally dispatched to lysosomes for degradation (3). When localization of APase in rat hepatocytes was investigated by immunoelectron microscopy, APase was found to be localized in lysosomes and endosomes, but not in coated pits on the cell surface, which are positive for LGP107, and from which antibodies for LGP107 are internalized. Further, unlike LGP107, newly synthesized APase was not detected in plasma membranes isolated from livers of rats given [35S]methionine, and when cultured hepatocytes were exposed to 125I-labeled anti APase IgG at 37 degrees C, there was no transfer of the antibody to lysosomes even after 24 h incubation. Therefore, these results indicate that intracellular movement of APase does not involve cell surface passage in rat hepatocytes, and clearly differs from the recent report that human APase is transported to lysosomes via the cell surface in BHK cells transfected with its cDNA (4).  相似文献   

8.
Little is known about the role of the extracellular matrix in cellular growth, migration and differentiation in the developing liver. The distribution and origin of the main constituents of the hepatic extracellular matrix have never been studied during liver differentiation. We have investigated the extracellular and intracellular distribution of fibronectin, laminin and types I, III and IV collagen in both rat and human liver during the perinatal period by light and electron microscopy, using the indirect immunoperoxidase method. All these components were demonstrated extracellularly, located mainly in portal spaces and, to a lesser extent, surrounding central veins. In perisinusoidal spaces, variations in distribution were observed depending on the matrix protein, the age of the donor and the species. In fetal rat liver, fibronectin formed a continuous layer around hepatocyte clusters while laminin and type III procollagen were present in small amounts. Collagens and laminin were visualized more easily in newborn rat liver. Fetal and newborn human liver contained higher amounts of matrix components than their rat counterparts. Fibronectin also reacted strongly in the sinusoid, and laminin and collagens formed discontinuous deposits. The source of this extracellular matrix was demonstrated to be of mixed origin. The major finding was the presence of immunoreactive laminin in the rough endoplasmic reticulum of hepatocytes irrespective of the age or species. In addition, hepatocytes contained large amounts of fibronectin and little of type I collagen. Another basement membrane component, type IV collagen, was also found in hepatocytes from all groups except fetal rat. Perisinusoidal cells also contained various matrix components including laminin, type III procollagen and, again with the exception of fetal rat liver, type IV collagen. The greater amounts of basement membrane components in the sinusoids of developing liver than in adult tissue and the participation of immature hepatocytes in the production of laminin and to a lesser degree of type IV collagen suggest that these matrix proteins play a critical role during liver differentiation.  相似文献   

9.
The ultrastructural localization of copper, zinc-superoxide dismutase (Cu, Zn-SOD) in the liver of patients with acute hepatitis, chronic hepatitis, liver cirrhosis and alcoholic fatty liver was studied by means of the indirect immunoperoxidase technique. In hepatocytes Cu, Zn-SOD was found to be localized in perinuclear cisternae, rough endoplasmic reticulum (rER), vesicles and Golgi apparatus. The Cu, Zn-SOD was also detected around the lipid droplets in hepatocytes as well as on the cytoplasmic membrane in cases of liver cirrhosis. These findings suggest that Cu, Zn-SOD is produced in the rER in hepatocytes and protects the cells from cellular injury caused by superoxide anion radical in various disorders of the liver.  相似文献   

10.
The protein product of the ras oncogene, Ha-ras (p21), is thought to be an important regulator of cell growth. The cytoplasmic relocalization of p21 in the cell during the cell cycle suggests a transient signaling role for this protein in association with its signal transduction function. Because of the importance of this role we examined spatial patterns in vivo of p21 expression at the protein and mRNA levels in hepatocytes during compensatory growth in rat liver following partial hepatectomy. A low level of p21 was immunolocalized on the cytoplasmic membrane of nonregenerating hepatocytes. The level of hepatic p21 increased significantly and without spatial restriction within the liver from 36 to 60 hr after partial hepatectomy (PH). p21 was localized in the cytoplasm of dividing hepatocytes and on the hepatic cytoplasmic membrane. The elevated p21 level decreased and was found mainly on hepatocyte plasma membranes by 96 hr after PH. Immunogold electron microscopy showed p21 localized over mitochondrial membranes and nuclei in nondividing regenerating hepatocytes. Approximately 50% of nonregenerating hepatocytes show nuclear localization of p21. This percentage changes with time following PH. The decrease in nuclear localization was accompanied with an increase in the low number of hepatocytes which demonstrated cytoplasmic localization in nondividing hepatocytes in regenerating liver. Flow cytometric analysis revealed a significant increase of p21 at 36 hr after PH which was 12 hr after the initial induction of ras mRNA. ras mRNA level increased 1.5-fold at 24 hr after PH and a maximum twofold induction was observed at 48 hr. Cell-cycle analysis of regenerating hepatocytes indicated a synchronized first peak of cell division 36-40 hr after PH. Dual parameter flow cytometry revealed that the level of p21 in hepatocytes in S phase and G2/M phase of the cell cycle was significantly higher than that in G0/G1 phase during regeneration. These findings suggest that p21 is important for the progression of regenerating hepatocytes to S phase and then to G2/M phase.  相似文献   

11.
The sinusoid organization during the development of fetal rat livers was studied using a SE-1 antibody, which we have previously established as a specific monoclonal antibody against rat sinusoidal endothelial cell (SEC). Expression and localization of the SE-1 antigen in the liver tissues of 13- to 21-day-old fetuses were immunofluorescently and immunoelectron microscopically examined. The first positive fluorescence was observed in the immature liver of 15-day-old fetuses. The initial positive staining was randomly distributed in the liver parenchyma and showed no direct relation to the large vessels which may be derived from the fetal vitelline veins. The positive linear staining increased in number and connected with each other during the course of development. The SE-1 staining pattern and the sinusoidal arrangement became similar to those of the adult liver after 20th day of gestation. Immunoelectron microscopically, the immature SEC showed a weak positive reaction for the SE-1 antigen at their membrane and was observed together with immature hepatocytes and hematopoietic cells in the 15-day-old fetal liver. Along with the liver development, SEC formed a sinusoid structure closely associated with hepatocytes and came to strongly express the SE-1 antigen. These results indicate that the organization of the hepatic sinusoid may start at around 15th day of the gestation and occurs randomly in the fetal liver parenchyma. It is also suggested that the expression of SE-1 antigen is possibly regulated by the intimate association with hepatocytes.  相似文献   

12.
The phenotypic features of liver sinusoidal endothelial cells (SEC), open fenestrae in sieve plates and lack of a basement membrane, are lost with capillarization. The current study examines localization of CD31 as a marker for the dedifferentiated, nonfenestrated SEC and examines regulation of SEC phenotype in vitro. CD31 localization in SEC was examined by confocal microscopy and immunogold-scanning electron microscopy. SEC cultured for 1 day express CD31 in the cytoplasm, whereas after 3 days, CD31 is also expressed on cell-cell junctions. Immunogold-scanning electron microscopy confirmed the absence of CD31 surface expression on fenestrated SEC 1 day after isolation and demonstrated the appearance of CD31 surface expression on SEC that had lost fenestration after 3 days in culture. SEC isolated from fibrotic liver do show increased expression of CD31 on the cell surface. Coculture with either hepatocytes or stellate cells prevents CD31 surface expression, and this effect does not require heterotypic contact. The paracrine effect of hepatocytes or stellate cells on SEC phenotype is abolished with anti-VEGF antibody and is reproduced by addition of VEGF to SEC cultured alone. VEGF stimulates SEC production of nitric oxide. NG-nitro-L-arginine methyl ester blocked the paracrine effect of hepatocytes or stellate cells on SEC phenotype and blocked the ability of VEGF to preserve the phenotype of SEC cultured alone. In conclusion, surface expression of CD31 is a marker of a dedifferentiated, nonfenestrated SEC. The VEGF-mediated paracrine effect of hepatocytes or stellate cells on maintenance of SEC phenotype requires autocrine production of nitric oxide by SEC.  相似文献   

13.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

14.
Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain   总被引:18,自引:0,他引:18  
The aims of this study were to determine the cellular and subcellular localization of aquaporin-9 (AQP9) in different rat organs by immunoblotting, immunohistochemistry and immunoelectron microscopy. To analyze this, we used rabbit antibodies to rat AQP9 raised against three different AQP9 peptides (amino acids 267-287, 274-295, and 278-295). In Cos7 cells transfected with rat AQP9, the affinity-purified antibodies exhibited marked labeling, whereas nontransfected cells and cells transfected with aquaporin-8 (AQP8) exhibited no labeling, indicating the specificity of the AQP9 antibodies. Immunoblotting revealed a predominant band of 28 kDa in membranes of total rat liver, epididymis, testes, spleen, and brain. Preabsorption with the immunizing peptides eliminated the labeling. Immunohistochemistry showed strong anti-AQP9 labeling in liver hepatocytes. The labeling was strongest at the sinusoidal surface, and there was little intracellular labeling. Immunoelectron microscopy revealed that the labeling was associated with the plasma membrane of the hepatocytes. In testes Leydig cells exhibited anti-AQP9 labeling, and in epididymis, the stereocilia of the ciliated cells (principal cells) exhibited significant labeling, whereas there was no labeling of the nonciliated cells (basal cells). This was confirmed by immunoelectron microscopy. In spleen strong labeling of cells was observed of leukocytes in the red pulp, whereas there was no labeling of cells in the white pulp. In rat brain, AQP9 immunolabeling was confined to ependymal cells lining the ventricles and to the tanycytes of the mediobasal hypothalamus. Antibody preabsorbed with the immunizing peptide revealed no labeling. In conclusion, AQP9 proteins is strongly expressed in rat liver, testes, epididymis, spleen, and brain.  相似文献   

15.
We examined the localization of fodrin in epithelial cells of rat uriniferous and collecting tubules by immunofluorescence and immunoelectron microscopy of frozen sections. In the uriniferous tubule, fodrin was found along the cell membrane and in the well-developed terminal web, as previously reported in other epithelial cells: in the terminal web and along the basolateral cell membrane in the proximal tubule; all around the cell surface in the thin limb of Henle; along the basolateral surface in the thick limb of Henle's thick segment and the distal tubule. In the intercalated cells of the collecting tubule, fodrin was found not only along the basolateral cell membrane but also in the apical cytoplasm. The most peculiar labeling was obtained in the principal cells of the collecting tubule. In addition to labeling in the basolateral cell membrane, fodrin was found diffusely in the cytoplasmic matrix. Association of fodrin with any particular structure could not be identified, but the Golgi area was apparently free of labeling. Cytoplasmic labeling was more conspicuous in the principal cells of the medulla than in those of the cortex. The present results show that fodrin need not always exist in association with the cell membrane or the cytoskeleton but can occur in the cytoplasmic matrix, at least in epithelial cells. We discuss the possible physiological significance of the latter distribution.  相似文献   

16.
Here we describe a comparative study of phenotypic properties of hepatic cells in situ and in vitro. We analyzed the expression levels and distribution patterns of ABC transporters MRP2 and MDR1, pan-cytokeratin, cytokeratin 18, albumin, alpha-fetoprotein and the specific hepatocyte marker OCH1E5 in the fetal and adult rat as well as human liver tissue and in human fetal hepatocytes of WRL 68 cell line using peroxidase immunohistochemistry or immunofluorescence. Transporters MRP2 and MDR1 were expressed in all examined liver tissues, except rat ED13 embryo. The immunopositivity of these proteins was localized to the canalicular membrane of differentiating and mature hepatocytes but in the later developmental stages and in the adult liver tissues it was also found in the apical membrane of cholangiocytes. In WRL 68 cells, MRP2 and MDR1 immunoreactivity appeared after 5-6 days of cultivation and both transporters were fully expressed in the plasmalemma and in the cytoplasm 9 days after the passage. In conclusion, we observed only moderate variances reflecting diverse ontogenetic phases between the fetal and adult liver tissue. To study functions of hepatocytes in vitro, WRL 68 cells have to differentiate prior to the examination. Our findings indicate that WRL 68 cells can undergo differentiation in vitro and their antigenic profile closely resembles hepatocytes in the human liver.  相似文献   

17.
《The Journal of cell biology》1990,111(5):2117-2127
We have identified an integral membrane glycoprotein in rat liver that mediates adhesion of cultured hepatocytes on fibronectin substrata. The protein was isolated by affinity chromatography of detergent extracts on wheat germ lectin-Agarose followed by chromatography of the WGA binding fraction on fibronectin-Sepharose. The glycoprotein (AGp110), eluted at high salt concentrations from the fibronectin column, has a molecular mass of 110 kD and a pI of 4.2. Binding of immobilized AGp110 to soluble rat plasma fibronectin required Ca2+ ions but was not inhibited by RGD peptides. Fab' fragments of immunoglobulins raised in rabbits against AGp110 reversed the spreading of primary hepatocytes attached onto fibronectin-coated substrata, but had no effect on cells spread on type IV collagen or laminin substrata. The effect of the antiserum on cell spreading was reversible. AGp110 was detected by immunofluorescence around the periphery of the ventral surface of substratum attached hepatocytes, and scattered on the dorsal surface. Immunohistochemical evidence and Western blotting of fractionated liver plasma membranes indicated a bile canalicular (apical) localization of AGp110 in the liver parenchyma. Expression of AGp110 is tissue specific: it was found mainly in liver, kidney, pancreas, and small intestine but was not detected in stomach, skeletal muscle, heart, and large intestine. AGp110 could be labeled by lactoperoxidase-catalyzed surface iodination of intact liver cells and, after phase partitioning of liver plasma membranes with the detergent Triton X-114, it was preferentially distributed in the hydrophobic phase. Treatment with glycosidases indicated extensive sialic acid substitution in at least 10 O-linked carbohydrate chains and 1-2 N-linked glycans. Immunological comparisons suggest that AGp110, the integrin fibronectin receptor and dipeptidyl peptidase IV, an enzyme involved in fibronectin-mediated adhesion of hepatocytes on collagen, are distinct proteins.  相似文献   

18.
Through observations of colloidal gold with silver enhancement, we have demonstrated that 2-nm colloidal gold labeled-testosterone-bovine serum albumin (BSA) conjugate or hydrocortisone-BSA conjugate injected intravenously enters the hormone-target cell nuclei of rats (Nishimura and Ichihara, 1997; Nishimura and Nakano, 1997, 1999). To confirm immunocytochemically whether the nature of BSA in the steroid hormone-BSA conjugates (steroid-BSAs) remains intact in the hormone-target cell nuclei, testosterone-BSA, hydrocortisone-BSA or corticosterone-BSA was injected into the vascular system of rats, then the liver and testes of rats killed 2 h postinjection were reacted with FITC-conjugated anti-BSA antibody, and examined under fluorescence microscopy and confocal laser scanning microscopy. In the liver of rat injected with testosterone-BSA, the fluorescence was observed in the nuclei of endothelial cells, but not in the nuclei of hepatocytes, hepatic stellate cells and Kupffer cells. In the liver of rat injected with hydrocortisone-BSA, intense fluorescence was seen in the nuclei of hepatic stellate cells, but did not seem to be present in the nuclei of the other three kinds of cells. In the liver of rat injected with corticosterone-BSA, the fluorescence seemed to be in a few nuclei of hepatic stellate cells, and appeared as speckles in a few nuclei of the hepatocytes and Kupffer cells. In some seminiferous tubules of rat injected with testosterone-BSA, fluorescence was observed in the nuclei of spermatocytes and spermatids. These results suggest that BSA conjugated with steroid hormone can enter the hormone-target cell nuclei with its antigenicity kept intact, and that the fate of steroid-BSAs is decided at the cell membrane level.  相似文献   

19.
Over 350 million people are chronically infected with hepatitis B virus (HBV), and a significant number of chronically infected individuals develop primary liver cancer. HBV encodes seven viral proteins, including the nonstructural X (HBx) protein. The results of studies with immortalized or transformed cells and with HBx-transgenic mice demonstrated that HBx can interact with mitochondria. However, no studies with normal hepatocytes have characterized the precise mitochondrial localization of HBx or the effect of HBx on mitochondrial physiology. We have used cultured primary rat hepatocytes as a model system to characterize the mitochondrial localization of HBx and the effect of HBx expression on mitochondrial physiology. We now show that a fraction of HBx colocalizes with density-gradient-purified mitochondria and associates with the outer mitochondrial membrane. We also demonstrate that HBx regulates mitochondrial membrane potential in hepatocytes and that this function of HBx varies depending on the status of NF-kappaB activity. In primary rat hepatocytes, HBx activation of NF-kappaB prevented mitochondrial membrane depolarization; however, when NF-kappaB activity was inhibited, HBx induced membrane depolarization through modulation of the mitochondrial permeability transition pore. Collectively, these results define potential pathways through which HBx may act in order to modulate mitochondrial physiology, thereby altering many cellular activities and ultimately contributing to the development of HBV-associated liver cancer.  相似文献   

20.
Although insulin-degrading enzyme (IDE) has been implicated in the intracellular degradation of insulin, the cellular localization of this enzyme is still controversial. In the present study, we have examined the cellular localization of IDE in the rat liver by three different techniques using monoclonal antibodies. First, direct immunohistochemical staining of rat liver with one of the monoclonal antibodies revealed that IDE immunoreactivity mainly exists in parenchymal cells, especially in the vicinity of the portal tract and also in the epithelium of the bile duct under light microscopy. In the electron microscopic study, IDE immunoreactivity was found in the cytoplasm near the rough endoplasmic reticulum but not in the plasma membrane, nucleus, or mitochondria. Second, immunoblotting analysis of the subcellular fraction in rat liver showed that the monoclonal antibody specifically reacted with a single polypeptide in the cytosolic fraction, of apparent Mr 110,000, which was consistent with the Mr of IDE. However, a polypeptide band corresponding to IDE could not be observed in the plasma membrane, mitochondrial, or lysosomal fraction. Third, IDE was only detectable in the cytosolic fraction by sandwich radioimmunoassay using two monoclonal antibodies. These results all suggest that IDE is a cytosolic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号