首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreER(TM)) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice. The pattern of recombination closely mirrored that of transgene expression. The percentage of astrocytes undergoing recombination varied from region to region ranging from 35% to 70% while a much smaller portion (<1%) of oligodendrocytes and neural precursor cells showed evidence of Cre activity. These mouse lines will provide important tools to dissect gene function in glial cells and in gliomagenesis.  相似文献   

2.
3.
The success of Cre-mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre-transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre-mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.  相似文献   

4.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

5.
Cre-mediated gene deletion in the mammary gland.   总被引:22,自引:1,他引:21       下载免费PDF全文
To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland.  相似文献   

6.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

8.
We generated a transgenic mouse line named E1-Ngn2/Cre that expresses Cre recombinase and GFP under the control of the E1 enhancer element of the gene Ngn2 (Scardigli et al.: Neuron 31:203-217, 2001). Cre-recombinase activity and GFP fluorescence are consistent with the reported expression pattern controlled by the E1-Ngn2 enhancer. Recombination was detected in the progenitor domains p1 and p2 in the ventricular zone of the neural tube and in distinct domains of the pretectum, the dorsal and ventral thalamus, the tegmentum of the mesencephalon, and the hindbrain. In the developing cortex, Cre-recombinase activity is confined to a subpopulation of progenitors predominantly in the region of the ventral and lateral pallium. The E1-Ngn2/Cre mouse line thus provides an excellent novel tool for a region-specific conditional mutagenesis in the developing CNS.  相似文献   

9.
Here, we describe a transgenic mouse line, in which expression of green fluorescent protein fused to Cre recombinase (GFP-Cre) is directed by the early neuronal enhancer (ENE) of Hoxb4. In E9.0-13.5 transgenic embryos, Cre activity coincided with endogenous Hoxb4 throughout the neural tube up to the r6/r7 boundary in the hindbrain, the dorsal root ganglia, and the Xth cranial ganglia. Unexpectedly, Cre activity was also consistently detected in the trigeminal (Vth) cranial nerve, which is devoid of endogenous Hoxb4 expression. Strong GFP dependent fluorescence appeared slightly later in E9.5-E11.5 embryos, and reflected the later expression pattern expected for Hoxb4-ENE directed expression in the neural tube up to the r7/r8 not r6/r7 boundary. Thus, with the exception of the trigeminal nerve, this reporter faithfully reproduces endogenous embryonic neural Hoxb4 expression, and provides an excellent reagent for in vivo gene manipulations in neuronal Hoxb4 positive cells as well as the developing trigeminal nerve. This transgenic mouse line should prove especially useful for determining the fate map of neuronal populations arising in rhombomeres 7 and 8 on its own and in combination with the small set of other existing rhombomere-specific Cre recombinase expressing lines.  相似文献   

10.
To facilitate the elucidation of the genetic events that may play an important role in the development or tumorigenesis of the prostate gland, we have generated a transgenic mouse line with prostate-specific expression of Cre recombinase. This line, named PB-Cre4, carries the Cre gene under the control of a composite promoter, ARR2PB which is a derivative of the rat prostate-specific probasin (PB) promoter. Based on RT-PCR detection of Cre mRNA in PB-Cre4 mice or Cre-mediated activation of LacZ activity in PB-Cre4/R26R double transgenic mice, it is conclusively demonstrated that Cre expression is post-natal and prostatic epithelium-specific. Although the Cre recombination is detected in all lobes of the mouse prostate, there is a significant difference in expression levels between the lobes, being highest in the lateral lobe, followed by the ventral, and then the dorsal and anterior lobes. Besides the prostate gland, no other tissues of the adult PB-Cre4 mice demonstrate significant Cre expression, except for a few scattered areas in the gonads and the stroma of the seminal vesicle. By crossing the PB-Cre4 animals with floxed RXRalpha allelic mice, we demonstrate that mice, whose conventional knockout of this gene is lethal in embryogenesis, could be propagated with selective inactivation of RXRalpha in the prostate. Taken together, the results show that the PB-Cre4 mice have high levels of Cre expression and a high penetrance in the prostatic epithelium. The PB-Cre4 mice will be a useful resource for genetic-based studies on prostate development and prostatic disease.  相似文献   

11.
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.  相似文献   

12.
目的探讨他莫昔芬诱导的hGfapCreERT2转基因鼠小脑中表达Cre重组酶的细胞类型。方法 hGfapCre-ERT2/Rosa26R转基因小鼠在胚胎晚期和出生早期用他莫昔芬诱导Cre重组酶表达,对小脑组织切片行X-gal染色,然后用细胞种类特异性抗体进行免疫组织化学染色,并和X-gal染色双重标记。结果在出生后第7天(P7)、第14天(P14)和第60天(P60),X-gal阳性染色和胶质细胞抗体Blbp阳性染色共标记,和神经元抗体Neun、浦肯野细胞抗体Calbindin及少突胶质细胞前体细胞抗体NG2不共标。结论自胚胎晚期第17.5天(E17.5)后用他莫昔芬诱导hGfapCreERT2转基因鼠,发现Cre重组酶特异性在小脑星形胶质细胞中表达,不在神经元、浦肯野细胞、少突胶质细胞前体细胞中表达。  相似文献   

13.
14.
With the intention to modulate gene expression in vascular mural cells of remodeling vessels, we generated and characterized transgenic mouse lines with Cre recombinase under the control of the platelet-derived growth factor receptor-β promoter, referred to as Tg(Pdgfrb-Cre)(35Vli) . Transgenic mice were crossed with the Gt(ROSA)26Sor(tm1Sor) strain and examined for Cre activation by β-galactosidase activity, which was compared with endogenous Pdgfrb expression. In addition, Pdgfrb-Cre mice were used to drive expression of a conditional myc-tagged Cthrc1 transgene. There was good overlap of β-galactosidase activity with endogenous Pdgfrb immunoreactivity. However, dedifferentiation of vascular mural cells induced by carotid artery ligation revealed a dramatic discrepancy between ROSA26 reporter activity and Pdgfrb promoter driven Cre dependent myc-tagged Cthrc1 transgene expression. Our studies demonstrate the capability of the Pdgfrb-Cre mouse to drive conditional transgene expression as a result of prior Cre-mediated recombination in tissues known to express endogenous Pdgfrb. In addition, the study shows that ROSA26 promoter driven reporter mice are not suitable for lineage marking of smooth muscle in remodeling blood vessels.  相似文献   

15.
We have obtained a PrP-Cre-ER(T) transgenic mouse line (28.8) that selectively expresses in testis the tamoxifen-inducible Cre-ER(T) recombinase under the control of a mouse Prion protein (PrP) promoter-containing genomic fragment. Cre-ER(T) is expressed in spermatogonia and spermatocytes, but not in Sertoli and Leydig cells. We also established reporter PrP-L-EGFP-L transgenic mice harboring a LoxP-flanked enhanced green fluorescent protein (EGFP) Cre reporter cassette under the control of the same PrP promoter-containing genomic fragment that exhibits prominent EGFP expression in brain and testis. Using the PrP-L-EGFP-L as well as other Cre-reporter mice, we demonstrate that tamoxifen administration efficiently and selectively induces Cre-mediated recombination in the germ cell lineage. The established PrP-Cre-ER(T) line should provide a valuable tool for studying functions of germ cell-expressed genes involved in spermatogenesis.  相似文献   

16.
消化道细胞表达Cre重组酶转基因小鼠的功能鉴定   总被引:1,自引:0,他引:1  
目的:检测白蛋白启动子介导的Cre重组酶转基因小鼠Alb-Cre-2中Cre重组酶的组织分布及其在体内介导基因重组的作用。方法:将Alb-Cre小鼠与Smad4条件基因打靶小鼠交配,利用PCR对Cre重组酶介导重组的组织特异性进行检测;然后,将Alb-Cre-2转基因小鼠与ROSA26报告小鼠交配,利用LacZ染色对双转基因阳性子代小鼠进行检测。结果:PCR结果显示心、肺、胰、脑及消化道中Cre重组酶介导的Smad4基因发生重组;LacZ染色进一步表明Cre重组酶在肝细胞、胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞、大肠柱状细胞及空泡细胞中特异性表达,并介导ROSA位点LoxP序列间的重组。结论:Alb-Cre-2转基因小鼠在消化道中具有一定的组织特异性,只在胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞,大肠柱状细胞及空泡细胞等细胞类型中特异性表达,并能在体内成功地介导这些消化道上皮细胞基因组上LoxP位点间的重组,是一种研制在消化道特定细胞中特异性基因剔除小鼠的良好工具小鼠。  相似文献   

17.
S Gagneten  Y Le  J Miller    B Sauer 《Nucleic acids research》1997,25(16):3326-3331
The Cre DNA recombinase of bacteriophage P1 has become a useful tool for precise genomic manipulation in embryonic stem (ES) cells that have been gene modified by homologous recombination. We have re-engineered the cre gene to allow ready identification of living Cre+cells by constructing a functional fusion between Cre and an enhanced green fluorescent protein from Aequorea victoria (GFPS65T). The GFP cre fusion gene product rapidly targeted the nucleus in the absence of any exogenous nuclear localization signal. Moreover, GFPCre catalyzed efficient DNA recombination in both a mouse 3T3 derivative cell line and in murine ES cells. Fluorescence- activated cell sorting (FACS) of transiently GFP cre -transfected ES cells not only allowed rapid and efficient isolation of Cre+cells after DNA transfection but also demonstrated that a burst of Cre expression is sufficient to commit cells to Cre-mediated 'pop-out' of loxP -tagged DNA from the genome. Thus, GFP cre allows rapid identification of living cells in which loxP - flanked DNA sequences are destined to be removed from the genome by Cre-mediated recombination without reliance on recombinational activation or inactivation of a marker gene at the target locus. In addition, the GFP cre fusion gene will prove useful in tracing tissue-specific Cre expression in transgenic animals, thereby facilitating the generation and analysis of conditional gene knockout mice.  相似文献   

18.
Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae, and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non‐neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization, and genome manipulation in these populations. genesis 47:765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.  相似文献   

20.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号