首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-kappaB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and interferon (IFN)-gamma. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 microM) or the proteosome inhibitor MG-132 (1 microM). SB-203580 did not affect cytokine-stimulated IkappaBalpha degradation, NF-kappaB nuclear binding activity, or NF-kappaB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-kappaB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-kappaB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-kappaB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.  相似文献   

2.
Variations in the matrix metalloproteinase (MMP)-9 gene are related to the presence and severity of atherosclerosis. The aim of this study was to determine the signaling pathways of MMP-9 in endothelial cells subjected to low fluid shear stress. We found that low fluid shear stress significantly increased MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and phosphorylation of MAPK in cultured human umbilical vein endothelial cells (HUVECs). Inhibition of NF-kappaB resulted in remarkable downregulation of stress-induced MMP-9 expression. Pretreatment of HUVECs with inhibitors of p38 mitogen-activating protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) also led to significant suppression of stress-induced MMP-9 expression and NF-kappaB DNA-binding activity. Similarly, addition of integrins inhibitor to HUVECs suppressed the stress-induced MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and the phosphorylation of p38 MAPK, ERK1/2. Our findings demonstrated that the shear stress-induced MMP-9 expression involved integrins-p38 MAPK or ERK1/2-NF-kappaB signaling pathways.  相似文献   

3.
4.
Streptococcus pneumoniae is a major cause of community-acquired pneumonia and death from infectious diseases in industrialized countries. Lung airway and alveolar epithelial cells comprise an important barrier against airborne pathogens. Cyclooxygenase (COX)-derived prostaglandins, such as PGE(2), are considered to be important regulators of lung function. Herein, we tested the hypothesis that pneumococci induced COX-2-dependent PGE(2) production in pulmonary epithelial cells. Pneumococci-infected human pulmonary epithelial BEAS-2B cells released PGE(2). Expression of COX-2 but not COX-1 was dose and time dependently increased in S. pneumoniae-infected BEAS-2B cells as well as in lungs of mice with pneumococcal pneumonia. S. pneumoniae induced degradation of IkappaBalpha and DNA binding of NF-kappaB. A specific peptide inhibitor of the IkappaBalpha kinase complex blocked pneumococci-induced PGE(2) release and COX-2 expression. In addition, we noted activation of p38 MAPK and JNK in pneumococci-infected BEAS-2B cells. PGE(2) release and COX-2 expression were reduced by p38 MAPK inhibitor SB-202190 but not by JNK inhibitor SP-600125. We analyzed interaction of kinase pathways and NF-kappaB activation: dominant-negative mutants of p38 MAPK isoforms alpha, beta(2), gamma, and delta blocked S. pneumoniae-induced NF-kappaB activation. In addition, recruitment of NF-kappaB subunit p65/RelA and RNA polymerase II to the cox2 promoter depended on p38 MAPK but not on JNK activity. In summary, p38 MAPK- and NF-kappaB-controlled COX-2 expression and subsequent PGE(2) release by lung epithelial cells may contribute significantly to the host response in pneumococcal pneumonia.  相似文献   

5.
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.  相似文献   

6.
7.
Macrophage prostaglandin E2 (PGE2) production is important in cellular immune suppression and in affecting the potential development of sepsis after trauma. We hypothesized that macrophage PGE2 production after trauma is regulated by mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). Mice were subjected to trauma and splenic macrophages isolated 7 days later. Macrophages from traumatized mice showed increased cyclooxygenase-2 (COX-2) mRNA, protein expression, and PGE2 production compared with controls. Increased phosphorylation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 kinase was observed in macrophages from traumatized mice. Pharmacologic inhibition of MAPK blocked trauma-induced COX-2 expression, and PGE2 production. Trauma macrophages showed increased IkappaBalpha phosphorylation and NF-kappaB binding to DNA. Inhibiting IkappaBalpha blocked trauma-induced NF-kappaB activity, COX-2 expression and PGE2 production. This suggests that trauma-induced PGE2 production is mediated through MAPK and NF-kappaB activation and offers potential for modifying the macrophages' responses following injury.  相似文献   

8.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

9.
10.
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that induces a broad spectrum of responses including angiogenesis. Angiogenesis promoted by TNF-alpha is mediated, at least in part, by ephrin A1, a member of the ligand family for Eph receptor tyrosine kinases. Although TNF-alpha induces ephrin A1 expression in endothelial cells, the signaling pathways mediating ephrin A1 induction remain unknown. In this study, we investigated the signaling mechanisms of TNF-alpha-dependent induction of ephrin A1 in endothelial cells. Both TNFR1 and TNFR2 appear to be involved in regulating ephrin A1 expression in endothelial cells, because neutralizing antibodies to either TNFR1 or TNFR2 inhibited TNF-alpha-induced ephrin A1 expression. Inhibition of nuclear factor-kappaB (NF-kappaB) activation by a trans-dominant inhibitory isoform of mutant IkappaBalpha did not affect ephrin A1 induction, suggesting that NF-kappaB proteins are not major regulators of ephrin A1 expression. In contrast, ephrin A1 induction was blocked by inhibition of p38 mitogen-activated protein kinase (MAPK) or SAPK/JNK, but not p42/44 MAPK, using either selective chemical inhibitors or dominant-negative forms of p38 MAPK or TNF receptor-associated factor 2. These findings indicate that TNF-alpha-induced ephrin A1 expression is mediated through JNK and p38 MAPK signaling pathways. Taken together, the results of our study demonstrated that induction of ephrin A1 in endothelial cells by TNF-alpha is mediated through both p38 MAPK and SAPK/JNK, but not p42/44 MAPK or NF-kappaB, pathways.  相似文献   

11.
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

12.
Macrophages respond to infection with pathogenic Yersinia species by activating MAPK- and NF-kappaB-signaling pathways. To counteract this response, Yersiniae secrete a protease (Yersinia outer protein J (YopJ)) that is delivered into macrophages, deactivates MAPK- and NF-kappaB-signaling pathways, and induces apoptosis. NF-kappaB promotes cell survival by up-regulating expression of several apoptosis inhibitor genes. Previous studies show that deactivation of the NF-kappaB pathway by YopJ is important for Yersinia-induced apoptosis. To determine whether deactivation of the NF-kappaB pathway is sufficient for Yersinia-induced apoptosis, two inhibitors of the NF-kappaB pathway, IkappaBalpha superrepressor or A20, were expressed in macrophages. Macrophages expressing these proteins were infected with Yersinia pseudotuberculosis strains that secrete functionally active or inactive forms of YopJ. Apoptosis levels were substantially higher (5- to 10-fold) when active YopJ was delivered into macrophages expressing IkappaBalpha superrepressor or A20, suggesting that deactivation of the NF-kappaB pathway is not sufficient for rapid Yersinia-induced apoptosis. When macrophages expressing A20 were treated with specific inhibitors of MAPKs, similar levels of apoptosis (within approximately 2-fold) were observed when active or inactive YopJ were delivered during infection. These results suggest that MAPK and NF-kappaB pathways function together to up-regulate apoptosis inhibitor gene expression in macrophages in response to Yersinia infection and that YopJ deactivates both pathways to promote rapid apoptosis. In addition, treating macrophages with a proteasome inhibitor results in higher levels of infection-induced apoptosis than can be achieved by blocking NF-kappaB function alone, suggesting that proapoptotic proteins are stabilized when proteasome function is blocked in macrophages.  相似文献   

13.
14.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

15.
Two signaling pathways, the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)-dependent pathway and the nuclear factor-kappaB (NF-kappaB)-dependent pathway, have been known to mediate megakaryocytic differentiation of K562 cells induced by phorbol 12-myristate 13-acetate (PMA). In this study, we examined whether 90-kDa ribosomal S6 kinase (RSK), known as a substrate of ERK/MAPK and a signal-inducible IkappaBalpha kinase, would link two pathways during the differentiation. RSK1 was activated in a time- and dose-dependent manner during the PMA-induced differentiation. Overexpression of wild-type or dominant inhibitory mutant (D205N) of RSK1 enhanced or suppressed PMA-stimulated NF-kappaB activation and megakaryocytic differentiation as shown by morphology, nonspecific esterase activity, and expression of the CD41 megakaryocytic marker, respectively. In addition, overexpression of the dominant inhibitory mutant (S32A/S36A) of IkappaBalpha inhibited PMA-stimulated and RSK1-enhanced megakaryocytic differentiation, indicating that NF-kappaB mediates a signal for megakaryocytic differentiation downstream of RSK1. PMA-stimulated activation of ERK/MAPK, RSK1, and NF-kappaB and the PMA-induced megakaryocytic differentiation were prevented by pretreatment with PD98059, a specific inhibitor of the mitogen-activated ERK kinase (MEK). Therefore, these results demonstrate that the sequential ERK/RSK1/NF-kappaB pathway mediates PMA-stimulated megakaryocytic differentiation of K562 cells.  相似文献   

16.
The functional significance of protease-activated receptors (PARs) in endothelial cells is largely undefined, and the intracellular consequences of their activation are poorly understood. Here, we show that the serine protease thrombin, a PAR-1-selective peptide (TFLLRN), and SLIGKV (PAR-2-selective peptide) induce cyclooxygenase-2 (COX-2) protein and mRNA expression in human endothelial cells without modifying COX-1 expression. COX-2 induction was accompanied by sustained production of 6-keto-PGF1alpha, the stable hydrolysis product of prostacyclin, and this was inhibited by indomethacin and the COX-2-selective inhibitor NS398. PAR-1 and PAR-2 stimulation rapidly activated both ERK1/2 and p38MAPK, and pharmacological blockade of MEK with either PD98059 or U0126 or of p38MAPK by SB203580 or SB202190 strongly inhibited thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha formation. Thrombin and peptide agonists of PAR-1 and PAR-2 increased luciferase activity in human umbilical vein endothelial cells infected with an NF-kappaB-dependent luciferase reporter adenovirus, and this, as well as PAR-induced 6-keto-PGF1alpha synthesis, was inhibited by co-infection with adenovirus encoding wild-type or mutated (Y42F) IkappaBalpha. Thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha generation were markedly attenuated by the NF-kappaB inhibitor PG490 and partially inhibited by the proteasome pathway inhibitor MG-132. Activation of PAR-1 or PAR-2 promoted nuclear translocation and phosphorylation of p65-NF-kappaB, and thrombin-induced but not PAR-2-induced p65-NF-kappaB phosphorylation was reduced by inhibition of MEK or p38MAPK. Activation of PAR-4 by AYPGKF increased phosphorylation of ERK1/2 and p38MAPK without modifying NF-kappaB activation or COX-2 induction. Our data show that PAR-1 and PAR-2, but not PAR-4, are coupled with COX-2 expression and sustained endothelial production of vasculoprotective prostacyclin by mechanisms that depend on ERK1/2, p38MAPK, and IkappaBalpha-dependent NF-kappaB activation.  相似文献   

17.
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. Cyclooxygenase-2 (COX-2) is a crucial mediator in mechanically induced bone formation. AMP-activated protein kinase (AMPK) has reported to sense and regulate the cellular energy status in various cell types. Here we found that US-mediated COX-2 expression was attenuated by LKB1 and AMPKalpha1 small interference RNA (siRNA) in human osteoblasts. Pretreatment of osteoblasts with AMPK inhibitor (araA and compound C), p38 inhibitor (SB203580), NF-kappaB inhibitor (PDTC), IkappaB protease inhibitor (TPCK) and NF-kappaB inhibitor peptide also inhibited the potentiating action of US. US increased the kinase activity and phosphorylation of LKB1, AMPK and p38. Stimulation of osteoblasts with US activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. US-mediated an increase of IKKalpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by araA, SB203580 and LKB1 siRNA. Our results suggest that US increased COX-2 expression in osteoblasts via the LKB1/AMPKalpha1/p38/IKKalphabeta and NF-kappaB signaling pathway.  相似文献   

18.
Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for antiviral therapy. Human intestinal Caco-2 cells were infected with human rotavirus Wa or simian rotavirus SA-11. COX-2 mRNA expression and secreted PGE2 levels were determined at different time points postinfection, and the effect of COX inhibitors on rotavirus infection was studied by an immunofluorescence assay (IFA). To reveal the signal transduction pathways involved, the effect of MEK, protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), and NF-kappaB inhibitors on rotavirus infection was analyzed. In infected Caco-2 cells, increased COX-2 mRNA expression and secreted PGE2 levels were detected. Indomethacin (inhibiting both COX-1 and COX-2) and specific COX-1 and COX-2 inhibitors reduced rotavirus infection by 85 and 50%, respectively, as measured by an IFA. Indomethacin reduced virus infection at a postbinding step early in the infection cycle, inhibiting virus protein synthesis. Indomethacin did not seem to affect viral RNA synthesis. Inhibitors of MEK, PKA, p38 MAPK, and NF-kappaB decreased rotavirus infection by at least 40%. PGE2 counteracted the effect of the COX and PKA inhibitors but not of the MEK, p38 MAPK, and NF-kappaB inhibitors. Conclusively, COXs and PGE2 are important mediators of rotavirus infection at a postbinding step. The ERK1/2 pathway mediated by PKA is involved in COX induction by rotavirus infection. MAPK and NF-kappaB pathways are involved in rotavirus infection but in a PGE2-independent manner. This report offers new perspectives in the search for therapeutic agents in treatment of severe rotavirus-mediated diarrhea in children.  相似文献   

19.
Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号