首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   

2.
Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells. rgs16 Tg T lymphocytes migrated to CC chemokine ligand 21 or CC chemokine ligand 12 injection sites in the peritoneum, but not to CXC chemokine ligand 12. In a Th2-dependent model of allergic pulmonary inflammation, CD4(+) lymphocytes bearing CCR3, CCR5, and CXCR4 trafficked in reduced numbers to the lung after acute inhalation challenge with allergen (OVA). In contrast, spleens of sensitized and challenged Tg mice contained increased numbers of CD4(+)CCR3(+) cells producing more Th2-type cytokines (IL-4, IL-5, and IL-13), which were associated with increased airway hyperreactivity. Migration of Tg lymphocytes to the lung parenchyma after adoptive transfer was significantly reduced compared with wild-type lymphocytes. Naive lymphocytes displayed normal CCR3 and CXCR4 expression and cytokine responses, and compartmentation in secondary lymphoid organs was normal without allergen challenge. These results suggest that RGS16 may regulate T lymphocyte activation in response to inflammatory stimuli and migration induced by CXCR4, CCR3, and CCR5, but not CCR2 or CCR7.  相似文献   

3.
We recently demonstrated that CD1d-restricted NKT cells resident in skin can inhibit CD8 T cell-mediated graft rejection of human papillomavirus E7-expressing skin through an IFN-γ-dependent mechanism. In this study, we examined the role of systemically derived NKT cells in regulating the rejection of skin grafts expressing viral proteins. In lymph nodes draining transplanted skin, Ag-specific CD8 T cell proliferation, cytokine production, and cytotoxic activity were impaired by NKT cells. NKT cell suppression was mediated via CD11c(+) dendritic cells. Inhibition of CD8 T cell function did not require Foxp3(+) regulatory T cells or NKT cell-secreted IFN-γ, IL-10, or IL-17. Thus, following skin grafting or immunization with human papillomavirus-E7 oncoprotein, NKT cells reduce the capacity of draining lymph node-resident APCs to cross-present Ag to CD8 T cell precursors, as evidenced by impaired expansion and differentiation to Ag-specific CD8 T effector cells. Therefore, in the context of viral Ag challenge in the skin, systemic NKT cells limit the capacity for effective priming of adaptive immunity.  相似文献   

4.
Nitric oxide (NO) levels are increased in the exhaled air of asthmatics. As NO levels correlate with allergic airway inflammation, NO measurement has been suggested for disease monitoring. In patients with asthma, we previously demonstrated that intrabronchial treatment with a natural porcine surfactant enhanced airway inflammation after segmental allergen provocation. We studied whether local levels of NO reflect the degree of allergic airway inflammation following segmental allergen challenge with or without surfactant pretreatment. Segmental NO, as well as nitrite and nitrate in bronchoalveolar lavage (BAL) fluid, was measured before and after segmental challenge with either saline, saline plus allergen, or surfactant plus allergen in 16 patients with asthma and five healthy subjects. The data were compared with inflammatory BAL cells. Segmental NO levels were increased after instillation of saline (p < 0.05), or surfactant plus allergen in asthmatics (p < 0.05), and values were higher after surfactant plus allergen compared to saline challenge. Nitrate BAL levels were not altered after saline challenge but increased after allergen challenge (p < 0.05) and further raised by surfactant (p < 0.05), whereas nitrite levels were not altered by any treatment. Segmental NO and nitrate levels correlated with the degree of eosinophilic airway inflammation, and nitrate levels also correlated with neutrophil and lymphocyte numbers in BAL. In healthy subjects, NO, nitrite, and nitrate were unaffected. Thus, segmental NO and nitrate levels reflect the degree of allergic airway inflammation in patients with asthma. Measurement of both markers can be useful in studies using segmental allergen provocation, to assess local effects of potential immunomodulators.  相似文献   

5.
6.
Following inoculation of Ag into the anterior chamber (a.c.), systemic tolerance develops that is mediated in part by Ag-specific efferent CD8(+) T regulatory (Tr) cells. This model of tolerance is called a.c.-associated immune deviation. The generation of the efferent CD8(+) Tr cell in a.c.-associated immune deviation is dependent on IL-10-producing, CD1d-restricted, invariant Valpha14(+) NKT (iNKT) cells. The iNKT cell subpopulations are either CD4(+) or CD4(-)CD8(-) double negative. This report identifies the subpopulation of iNKT cells that is important for induction of the efferent Tr cell. Because MHC class II(-/-) (class II(-/-)) mice generate efferent Tr cells following a.c. inoculation, we conclude that conventional CD4(+) T cells are not needed for the development of efferent CD8(+) T cells. Furthermore, Ab depletion of CD4(+) cells in both wild-type mice (remove both conventional and CD4(+) NKT cells) and class II(-/-) mice (remove CD4(+) NKT cells) abrogated the generation of Tr cells. We conclude that CD4(+) NKT cells, but not the class II molecule or conventional CD4(+) T cells, are required for generation of efferent CD8(+) Tr cells following Ag introduction into the eye. Understanding the mechanisms that lead to the generation of efferent CD8(+) Tr cells may lead to novel immunotherapy for immune inflammatory diseases.  相似文献   

7.
One of the characteristic features of allergic asthma is recruitment of large numbers of inflammatory cells including eosinophils and Th2 lymphocytes to the lung. This influx of inflammatory cells is thought to be a controlled and coordinated process mediated by chemokines and their receptors. It is thought that distinct, differential expression of chemokine receptors allows selective migration of T cell subtypes in response to the chemokines that bind these receptors. Th2 cells preferentially express CCR8 and migrate selectively to its ligand, CC chemokine ligand (CCL)1. We studied the role of the CCR8 ligand, CCL1, in the specific recruitment of Th2 cells and eosinophils to the lung in a murine model of allergic airway disease. We have demonstrated for the first time that CCL1 is up-regulated in the lung following allergen challenge. Moreover, a neutralizing Ab to CCL1 reduced eosinophil migration to the lung, but had no effect on recruitment of Th2 cells following allergen challenge. In addition, there was no change in airway hyperresponsiveness or levels of Th2 cytokines. In a Th2 cell transfer system of pulmonary inflammation, anti-CCL1 also failed to affect recruitment of Th2 cells to the lung following allergen challenge. Significantly, intratracheal instillation of rCCL1 increased recruitment of eosinophils but not Th2 cells to the lung in allergen-sensitized and -challenged mice. In summary, our results indicate that CCL1 is important for the pulmonary recruitment of eosinophils, rather than allergen-specific Th2 cells, following allergen challenge.  相似文献   

8.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

9.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

10.
The common gamma-chain cytokine, IL-21, is produced by CD4(+) T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag alpha-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with alpha-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.  相似文献   

11.
Fulminant liver failure (FLF) consists of a cascade of events beginning with a presumed uncontrolled systemic activation of the immune system. The etiology of FLF remains undefined. In this study, we demonstrate that CCR5 deficiency promotes the development of acute FLF in mice following Con A administration by preventing activated hepatic CD1d-restricted NKT cells (but not conventional T cells) from dying from activation-induced apoptosis. The resistance of CCR5-deficient NKT cells from activation-induced apoptosis following Con A administration is not due to a defective Fas-driven death pathway. Moreover, FLF in CCR5-deficient mice also correlated with hepatic CCR5-deficient NKT cells, producing more IL-4, but not IFN-gamma, relative to wild-type NKT cells. Furthermore, FLF in these mice was abolished by IL-4 mAb or NK1.1 mAb treatment. We propose that CCR5 deficiency may predispose individuals to the development of FLF by preventing hepatic NKT cell apoptosis and by regulating NKT cell function, establishing a novel role for CCR5 in the development of this catastrophic liver disease that is independent of leukocyte recruitment.  相似文献   

12.
We have demonstrated that Valpha24(+)Vbeta11(+) invariant (Valpha24(+)i) NKT cells from patients with allergic asthma express CCR9 at high frequency. CCR9 ligand CCL25 induces chemotaxis of asthmatic Valpha24(+)i NKT cells but not the normal cells. A large number of CCR9-positive Valpha24(+)i NKT cells are found in asthmatic bronchi mucosa, where high levels of Th2 cytokines are detected. Asthmatic Valpha24(+)i NKT cells, themselves Th1 biased, induce CD3(+) T cells into an expression of Th2 cytokines (IL-4 and IL-13) in cell-cell contact manner in vitro. CD226 are overexpressed on asthmatic Valpha24(+)i NKT cells. CCL25/CCR9 ligation causes directly phosphorylation of CD226, indicating that CCL25/CCR9 signals can cross-talk with CD226 signals to activate Valpha24(+)i NKT cells. Prestimulation with immobilized CD226 mAb does not change ability of asthmatic Valpha24(+)i NKT cells to induce Th2-cytokine production, whereas soluble CD226 mAb or short hairpin RNA of CD226 inhibits Valpha24(+)i NKT cells to induce Th2-cytokine production by CD3(+) T cells, indicating that CD226 engagement is necessary for Valpha24(+)i NKT cells to induce Th2 bias of CD3(+) T cells. Our results are providing with direct evidence that aberration of CCR9 expression on asthmatic Valpha24(+)i NKT cells. CCL25 is first time shown promoting the recruitment of CCR9-expressing Valpha24(+)i NKT cells into the lung to promote other T cells to produce Th2 cytokines to establish and develop allergic asthma. Our findings provide evidence that abnormal asthmatic Valpha24(+)i NKT cells induce systemically and locally a Th2 bias in T cells that is at least partially critical for the pathogenesis of allergic asthma.  相似文献   

13.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

14.
Upon antigenic stimulation, CD1d-restricted NKT cells quickly secrete large amounts of cytokines. This prompt response demonstrates that CD1d-restricted NKT cells may potentially prove to be useful therapeutic agents for the treatment of many diseases. Despite the clinical importance of CD1d-restricted NKT cells, the regulating mechanisms of this unique T cell population remain to be defined. We found murine LAG-3 is inducible on CD1d-restricted NKT cells as the result of a variety of stimulants such as concanavalin A (con A) and anti-CD3. Also, antigen-specific CD1d stimulation can elicit LAG-3 in CD1d-restricted NKT cells. Moreover, ectopic LAG-3 expression on CD1d-restricted NKT cells results in cell cycle arrest in the S phase. These results show that LAG-3 signaling on activated CD1d-restricted NKT cells may down-modulate NKT cell proliferation.  相似文献   

15.
In C57Bl/6 strain mice vaccinated with attenuated cercariae of Schistosoma mansoni, the major site of immune elimination of normal challenge parasites is the lungs. The immune effector mechanism involves formation of focal inflammatory responses; the abundance of CD4+ T cells and the activation of alveolar macrophages suggests a role for inflammatory cytokines. We report the profile of cytokines produced by cultures of leukocytes recovered by bronchoalveolar lavage (BAL) from the lungs of vaccinated and challenged mice. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes that produced abundant quantities of IFN-gamma and IL-3 on stimulation with larval Ag. Production declined from day 21 although the infiltrate of lymphocytes persisted. Challenge of vaccinated mice resulted in a second influx of IFN-gamma and IL-3-producing cells, earlier than after vaccination or in the appropriate controls. Ablation studies revealed that CD4+ T cells were essential for the production of IFN-gamma. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures be stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells. When Ag released from challenge schistosomula is presented to these cells, they respond by secreting cytokines that mediate the formation of cellular aggregates around the parasites, blocking their onward migration.  相似文献   

16.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

17.
Forkhead box P3 (FoxP3)-positive T cells are a specialized T cell subset for immune regulation and tolerance. We investigated the trafficking receptor switches of FoxP3(+) T cells in thymus and secondary lymphoid tissues and the functional consequences of these switches in migration. We found that FoxP3(+) T cells undergo two discrete developmental switches in trafficking receptors to migrate from primary to secondary and then to nonlymphoid tissues in a manner similar to conventional CD4(+) T cells as well as unique to the FoxP3(+) cell lineage. In the thymus, precursors of FoxP3(+) cells undergo the first trafficking receptor switch (CCR8/CCR9-->CXCR4-->CCR7), generating mostly homogeneous CD62L(+)CCR7(+)CXCR4(low)FoxP3(+) T cells. CXCR4 expression is regained in FoxP3(+) thymic emigrants in the periphery. Consistent with this switch, recent FoxP3(+) thymic emigrants migrate exclusively to secondary lymphoid tissues but poorly to nonlymphoid tissues. The FoxP3(+) thymic emigrants undergo the second switch in trafficking receptors for migration to nonlymphoid tissues upon Ag priming. This second switch involves down-regulation of CCR7 and CXCR4 but up-regulation of a number of memory/effector type homing receptors, resulting in generation of heterogeneous FoxP3(+) T cell subsets expressing various combinations of trafficking receptors including CCR2, CCR4, CCR6, CCR8, and CCR9. A notable difference between the FoxP3(+) and FoxP3(-) T cell populations is that FoxP3(+) T cells undergo the second homing receptor switch at a highly accelerated rate compared with FoxP3(-) T cells, generating FoxP3(+) T cells with unconventionally efficient migratory capacity to major nonlymphoid tissues.  相似文献   

18.
Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.  相似文献   

19.
V alpha 24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the V alpha 24 NKT cells can be subdivided into CD4(+) or CD4(-) subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4(+) and CD4(-) NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4(+) T-cell depletion. The number of CD4(+) NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4(-) NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4(+) NKT cells relative to regular CD4(+) T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4(+) lymph node homing (CD62L(+)) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4(-) CD62L(-) phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients.  相似文献   

20.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号