首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heterodimer of importin alpha and importin beta accomplishes the nuclear import of proteins carrying classical nuclear localization signals (NLS). The interaction between the two import factors is mediated by the IBB domain of importin alpha and involves an extended recognition surface as shown by X-ray crystallography. Using a combination of biochemical and biophysical techniques we have investigated the formation of the importin beta:IBB domain complex in solution. Our data suggest that upon binding to the IBB domain, importin beta adopts a compact, proteolytically resistant conformation, while simultaneously the IBB domain folds into an alpha helix. We suggest a model to describe how these dual mutually induced conformational changes may orchestrate the nuclear import of NLS cargo in vivo.  相似文献   

2.
Protein cargoes that contain a classic nuclear localization signal (NLS) are transported into the nucleus through binding to a heterodimeric receptor comprised of importin/karyopherin alpha and beta. An evolutionarily conserved auto-inhibitory sequence within the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding to the NLS binding pocket on importin alpha. In this study, we have used site-directed mutagenesis coupled with in vitro binding assays and in vivo analyses to investigate the intramolecular interaction of the N-terminal IBB domain and the NLS binding pocket of Saccharomyces cerevisiae importin alpha, Srp1p. We find that mutations within the IBB domain that decrease the binding affinity of the auto-inhibitory sequence for the NLS binding pocket impact importin alpha function in vivo. In addition, the severity of the in vivo phenotype is directly correlated to the reduction of auto-inhibition measured in vitro, suggesting that the in vivo phenotypes are directly related to the loss of auto-inhibitory function. We exploit a conditional auto-inhibitory mutant, srp1-55, to study the in vivo functional overlap between the N-terminal IBB domain of importin alpha and other factors implicated in NLS-cargo release, Cse1p and Nup2p. We propose that the N-terminal IBB domain of importin alpha and Cse1p function together in NLS-cargo release, whereas Nup2p contributes to cargo release/importin alpha recycling through a distinct mechanism.  相似文献   

3.
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.  相似文献   

4.
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~ 40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

5.
Smad proteins are intracellular mediators of transforming growth factor-beta (TGF-beta) and related cytokines. Although ligand-induced nuclear translocation of Smad proteins is clearly established, the pathway mediating this import is yet to be determined. We previously identified a nuclear localization signal (NLS) in the N-terminal region of Smad 3, the major Smad protein involved in TGF-beta signal transduction. This basic motif (Lys(40-)Lys-Leu-Lys-Lys(44)), conserved among all the pathway-specific Smad proteins, is required for Smad 3 nuclear import in response to ligand. Here we studied the nuclear import pathway of Smad 3 mediated by this NLS. We demonstrate that the isolated Smad 3 MH1 domain displays significant specific binding to importin beta, which is diminished or eliminated by mutations in the NLS. Full-size Smad 3 exhibits weak but specific binding to importin beta, which is enhanced after phosphorylation by the type I TGF-beta receptor. In contrast, no interaction was observed between importin alpha and Smad 3 or its MH1 domain, indicating that nuclear translocation of Smad proteins may occur through direct binding to importin beta. We propose that activation of all of the pathway-specific Smad proteins (Smads 1, 2, 3, 5, 8, and 9) exposes the conserved NLS motif, which then binds directly to importin beta and triggers nuclear translocation.  相似文献   

6.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) is an energy-dependent process that requires the heterodimer importin alpha/beta. Three to six basic contiguous arginine/lysine residues characterize a classical NLS and are thought to form a basic patch on the surface of the import cargo. In this study, we have characterized the NLS of phospholipid scramblase 1 (PLSCR1), a lipid-binding protein that enters the nucleus via the nonclassical NLS (257)GKISKHWTGI(266). This import sequence lacks a contiguous stretch of positively charged residues, and it is enriched in hydrophobic residues. We have determined the 2.2 A crystal structure of a complex between the PLSCR1 NLS and the armadillo repeat core of vertebrate importin alpha. Our crystallographic analysis reveals that PLSCR1 NLS binds to armadillo repeats 1-4 of importin alpha, but its interaction partially overlaps the classical NLS binding site. Two PLSCR1 lysines occupy the canonical positions indicated as P2 and P5. Moreover, we present in vivo evidence that the critical lysine at position P2, which is essential in other known NLS sequences, is dispensable in PLSCR1 NLS. Taken together, these data provide insight into a novel nuclear localization signal that presents a distinct motif for binding to importin alpha.  相似文献   

7.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

8.
Molecular recognition of the importin beta-binding (IBB) domain of importin alpha by importin beta is critical for the nuclear import of protein cargoes containing a classical nuclear localization signal. We have studied the function of four conserved tryptophans of importin beta (Trp-342, Trp-430, Trp-472, and Trp-864) located at the binding interface with the IBB domain by systematic alanine substitution mutagenesis. We found that Trp-864 is a mutational hot spot that significantly affects IBB-binding and import activity, whereas residues Trp-342, Trp-430, and Trp-472 are mutationally silent when analyzed individually. Interestingly, the combination of the hot spot at residue Trp-864 with mutations in the other three tryptophans gives rise to a striking synergy that diminishes IBB domain binding by up to approximately 1000-fold and, in turn, abolishes import activity. We propose that importin beta uses the tryptophans to select and stabilize a helical conformation of the IBB domain, which, in turn, conveys specific, high affinity binding.  相似文献   

9.
Parathyroid hormone-related protein (PTHrP), expressed in a range of tumors, has endocrine, autocrine/paracrine, and intracrine actions, some of which relate to its ability to localize in the nucleus. Here we show for the first time that extracellularly added human PTHrP (amino acids 1-108) can be taken up specifically by receptor-expressing UMR106.01 osteogenic sarcoma cells and accumulate to quite high levels in the nucleus and nucleolus within 40 min. Quantitation of recognition by the nuclear localization sequence (NLS)-binding importin subunits indicated that in contrast to proteins containing conventional NLSs, PTHrP is recognized exclusively by importin beta and not by importin alpha. The sequence of PTHrP responsible for binding was mapped to amino acids 66-94, which includes an SV40 large tumor-antigen NLS-like sequence, although sequence determinants amino-terminal to this region were also necessary for high affinity binding (apparent dissociation constant of approximately 2 nM for importin beta). Nuclear import of PTHrP was assessed in vitro using purified components, demonstrating that importin beta, together with the GTP-binding protein Ran, was able to mediate efficient nuclear accumulation in the absence of importin alpha, whereas the addition of nuclear transport factor NTF2 reduced transport. The polypeptide ligand PTHrP thus appears to be accumulated in the nucleus/nucleolus through a novel, NLS-dependent nuclear import pathway independent of importin alpha and perhaps also of NTF2.  相似文献   

10.
Molecular basis for the recognition of snurportin 1 by importin beta   总被引:1,自引:0,他引:1  
The nuclear import of uridine-rich ribonucleoproteins is mediated by the transport adaptor snurportin 1 (SNP1). Similar to importin alpha, SNP1 uses an N-terminal importin beta binding (sIBB) domain to recruit the receptor importin beta and gain access to the nucleus. In this study, we demonstrate that the sIBB domain has a bipartite nature, which contains two distinct binding determinants for importin beta. The first determinant spans residues 25-65 and includes the previously identified importin alpha IBB (alphaIBB) region of homology. The second binding determinant encompasses residues 1-24 and resembles region 1011-1035 of the nucleoporin 153 (Nup153). The two binding determinants synergize within the sIBB domain to confer a low nanomolar binding affinity for importin beta (K(d) approximately 2 nm) in an interaction that, in vitro, is displaced by RanGTP. We propose that in vivo the synergy of Nup153 and nuclear RanGTP promotes translocation of uridine-rich ribonucleoproteins into the nucleus.  相似文献   

11.
12.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

13.
Importin‐αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin‐α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin‐α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin‐α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co‐opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin‐α paralogs from Arabidopsis thaliana. A crystal structure of the importin‐α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin‐αs expressed in rosette leaves have an almost identical NLS‐binding site. Comparison of the importin‐α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin‐α, sequence variation at the importin‐α NLS‐binding sites and tissue‐specific expression levels of importin‐αs determine formation of cargo/importin‐α transport complexes in plant cells.  相似文献   

14.
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 A resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.  相似文献   

15.
Nuclear imports of uridine-rich small nuclear ribonucleoprotein (U1 snRNP) and proteins with classical nuclear localization signal (cNLS-protein) are mediated by importin beta. However, due to the presence of different import signals, the adapter protein of the imported molecules and importin beta is different for each pathway. Although the adapter for cNLS-protein is importin alpha, the adapter for U1 snRNP is snurportin1 (SPN1). Herein, we show that the use of distinct adapters by importin beta results in differences at the docking and releasing step for these two import pathways. Nuclear pore complex (NPC) docking of U1 snRNP but not of cNLS-protein was inhibited by an anti-CAN/Nup214 antibody. Thus, the initial NPC-binding site is different for each pathway. Pull-down assays between immobilized SPN1 and two truncated forms of importin beta documented that SPN1 and importin alpha have different binding sites on importin beta. Importin beta fragment 1-618, which binds to SPN1 but not to importin alpha, was able to support the nuclear import of U1 snRNPs. After the translocation through the NPC, both import complexes associated with the nuclear side of the NPC. However, we found that the nature of the importin beta-binding domain of the adapters influences the release of the cargo into the nucleoplasm.  相似文献   

16.
Nuclear localization signals (NLSs) target proteins into the nucleus through mediating interactions with nuclear import receptors. Here, we perform a quantitative analysis of the correlation between NLS receptor affinity and the steady-state distribution of NLS-bearing cargo proteins between the cytoplasm and the nucleus of live yeast, which reflects the relative import rates of various NLS sequences. We find that there is a complicated, but monotonic quantitative relationship between the affinity of an NLS for the import receptor, importin alpha, and the steady-state accumulation of the cargo in the nucleus. This analysis takes into consideration the impact of protein size. In addition, the hypothetical upper limit to an NLS affinity for the receptors is explored through genetic approaches. Overall, our results indicate that there is a correlation between the binding affinity of an NLS cargo for the NLS receptor, importin alpha, and the import rate for this cargo. This correlation, however, is not maintained for cargoes that bind to the NLS receptor with very weak or very strong affinity.  相似文献   

17.
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.  相似文献   

18.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

19.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

20.
Produced by various types of solid tumors, parathyroid hormone-related protein (PTHrP) is the causative agent of humoral hypercalcemia of malignancy. The similarity of PTHrP's amino-terminus to that of parathyroid hormone enables it to share some of the latter's signalling properties, but its carboxy-terminus confers distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. PTHrP nuclear import occurs via a novel importin beta1-mediated pathway. The present study uses several different direct binding assays to map the interaction of PTHrP with importin beta using a series of alanine mutated PTHrP peptides and truncated human importin beta1 derivatives. Our results indicate that PTHrP amino acids 83-93 (KTPGKKKKGK) are absolutely essential for importin beta1 recognition with residues 71-82 (TNKVETYKEQPL) additionally required for high affinity binding; residues 380-643 of importin beta1 are required for the interaction. Binding of importin beta1 to PTHrP is reduced in the presence of the GTP-bound but not GDP-bound form of the guanine nucleotide binding protein Ran, consistent with the idea that RanGTP binding to importin beta is involved in the release of PTHrP into the nucleus following translocation across the nuclear envelope. This study represents the first detailed examination of a modular, non-arginine-rich importin beta1-recognized nuclear targeting signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号