首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The 29-kDa subtilase homologue, Tri r 2, derived from the dermatophyte fungus Trichophyton rubrum, exhibits unique immunologic characteristics in its ability to elicit immediate (IH) and delayed-type (DTH) hypersensitivity skin tests in different individuals. Thus, Tri r 2 provides a model for comparing the T cell repertoire in subjects with distinct immune responses to a single Ag. Recombinant Tri r 2 produced as a GST fusion protein in Escherichia coli stimulated strong in vitro lymphoproliferative responses in 10 IH and 10 DTH responders. Patterns of T cell epitope recognition were compared between skin test groups using 28 overlapping peptides (each in 12 replicate wells) derived from Tri r 2 to stimulate T lymphocyte proliferation in vitro. Peptide 5 (P5; aa 41-60) induced the strongest response in DTH subjects and showed the largest difference between DTH and IH responders in proliferation (mean standardized index, 2.22 and 0.82, respectively; p = 0.0047) and number of positive wells (81 vs 12). Responses to P5 were associated with diverse HLA haplotypes. These results showed that P5 contains an immunodominant epitope specifically associated with DTH and that this peptide is recognized in a permissive manner. Cross-validated linear discriminant analysis using T cell proliferative responses to two regions of Tri r 2 (aa 51-90 and 231-270) gave a 95% predictive accuracy for classification of subjects into IH or DTH groups. We conclude that different immune responses to Trichophyton are mediated by distinct T cell repertoires between individuals with IH and DTH reactions to Tri r 2.  相似文献   

2.
Fungal infections of skin or nails are extremely common and often caused by dermatophyte fungi of the genus Trichophyton. These fungi are unusual in that they can give rise to delayed hypersensitivity (DH) or immediate hypersensitivity (IH) responses. Recently, IH to Trichophyton tonsurans has been demonstrated in patients by skin tests, serum IgE antibody test (RAST), and positive nasal and bronchial challenges. To further investigate the immunology of Trichophyton, a 30-kDa T. tonsurans allergen was isolated by gel filtration and hydrophobic interaction chromatography. This protein, Tri t I, gave a single band on SDS-PAGE, and the 30 amino-terminal amino acids have been determined. Among patients with positive IH skin tests, 34 of 48 (71%) had IgG antibody and 26 of 48 (54%) had IgE antibody to Tri t I. Among those who had positive responses to both skin tests and RAST, 22 of 30 (73%) had IgE antibodies to Tri t I; thus, this protein represents a major allergen. Twelve clones of murine IgG mAb antibodies were produced. Two clones, 2F2-F7 and 6B11-C2, were found to define separate epitopes on Tri t I and were used to develop an immunometric assay for the quantitation of Tri t I. Twenty-three of 38 volunteers with a history of athlete's foot were found to have either IH and/or DH to Trichophyton mix and underwent further testing with purified Tri t I. Of the nine found to have IH to the mix, eight were sensitive to Tri t I. Seven of these eight had IgG and IgE antibodies to Tri t I, by Ag-binding RIA, and all were RAST positive to the unpurified extract. An additional 14 had either DH alone (n = 7) or a wheal and flare response followed by DH at 48 h (n = 7). Of these 14 who had DH responses to Trichophyton mix, only one showed DH to an equivalent quantity of purified Tri t I; among this group, none showed IH or serum IgE antibodies and only one had detectable IgG antibody to Tri t I. The results suggest that the majority of subjects with DH to Trichophyton are responding to a protein other than Tri t I and that the wheal that precedes DH reactions is some patients is not associated with IgE antibodies.  相似文献   

3.
Although high dose exposure to inhaled cat allergen (Fel d 1) can cause a form of tolerance (modified Th2 response), the T cell mechanism for this phenomenon has not been studied. T cell responses to Fel d 1 were characterized in both allergic (IgE(pos)) and modified Th2 (IgE(neg)IgG(pos)) responders as well as serum Ab-negative controls (IgE(neg)IgG(neg)). Fel d 1 stimulated high levels of IL-10 in PBMC cultures from all individuals, with evidence of Th2 and Th1 cytokine skewing in allergic and control subjects, respectively. Using overlapping peptides, epitopes at the N terminus of Fel d 1 chain 2 were shown to stimulate strong T cell proliferation and to preferentially induce IL-10 (peptide 2:1 (P2:1)) or IFN-gamma (P2:2) regardless of the allergic status of the donor. Injection of cat extract during conventional immunotherapy stimulated expansion of IL-10- and IFN-gamma-producing chain 2 epitope-specific T cells along with increased Fel d 1-specific serum IgG and IgG4 Ab. Six of 12 modified responders expressed the major HLA-DRB1 allele, *0701, and both P2:1 and P2:2 were predicted ligands for this allele. Cultures from DR7-positive modified responders produced the highest levels of IL-10 to P2:1 in addition to other major and minor epitopes within chains 1 and 2. In the presence of anti-IL-10 mAb, both T cell proliferation and IFN-gamma production were enhanced in a Fel d 1- and epitope-specific manner. We conclude that IL-10-producing T cells specific for chain 2 epitopes are relevant to tolerance induction, and that DR7-restricted recognition of these epitopes favors a modified Th2 response.  相似文献   

4.
Porphyromonas gingivalis is a Gram-negative bacterium strongly associated with chronic periodontitis, an inflammatory oral disease. A major virulence factor common to all characterized strains of P. gingivalis is the RgpA-Kgp proteinase-adhesin complexes (RgpA-Kgp complexes). In this study, we investigated T cell proliferative and cytokine responses to the RgpA-Kgp complexes and identified T cell epitopes in BALB/c mice utilizing Pepscan methodology. T cell proliferative responses were found to be predominantly directed toward the proteinase catalytic domains. Eleven T cell epitopes were identified using RgpA-Kgp-primed lymph node T cells (IL-4 dominant) and 21 using an RgpA-Kgp-specific T cell line (IFN-gamma dominant), with 5 T cell epitopes, including the immunodominant epitope peptide 22, common to both T cell populations. Peptide 22 ((439)ANYTAHGSETAWADP(453)) from the Kgp proteinase catalytic domain induced a Th2 cytokine response in mice, and peptide 22-primed T cells had a Th2 cytokine profile when stimulated with the RgpA-Kgp complexes. Truncation and alanine scanning of peptide 22 identified the minimum epitope ((442)TAHGSETAWA(451)), and residues His(444), Glu(447), and Trp(450) as critical for T cell proliferation. With a view to vaccine development, peptide 22 was incorporated into a synthetic peptide polymer. Peptide 22 polymer induced strong T cell proliferation and crossreactivity to native RgpA-Kgp complexes. In conclusion, we have identified a major T cell epitope of P. gingivalis and established that antigenicity of the T cell epitope is retained when delivered as a peptide polymer. The strategies employed here may have potential in the development of a synthetic peptide vaccine for P. gingivalis.  相似文献   

5.
ABSTRACT Sap2 is the most abundant virulence factor expressed during Candida infection, and the principal protein known to induce antibody response during Candida infection in humans. Its role in T-cell activation however, has not yet been determined. Sequence analysis revealed that Sap2 contains two variable regions: Var1 and Var2. Computational predictions by the Hotspot Hunter program identified that Var1 contains three candidate T-cell epitopes, whereas Var2 contains four. Thirty-nine overlapping peptides of Sap2 were then synthesized, and tested for their ability to induce proliferation of PBMC from 12 donors. Peptides P11, P17 and P31 exhibited significantly higher proliferative indices when compared with those of other peptides or controls. P17 and P31 are located in the areas of prediction, while P11 is not. There were other peptides outside the prediction areas that could stimulate PBMC proliferation at low levels. Nevertheless, the proliferative noise caused by such peptides was ruled out by IL-2 ELISpot analysis. Only P17 and P31 were shown to induce clonal proliferation of IFN-gamma producing lymphocytes, suggesting that these two peptides contain T cell epitopes. P11, which stimulated IL-2 producing clones, contains a known B-cell epitope. Interestingly, P17 and P31 elicited both Th1 and Th2 cell responses with significant numbers of IL-13 secreting clones in response to stimulation. Taken together, the computer-based T cell epitope prediction method could identify the immunogenic T cell epitopes of C. albicans Sap2 that promiscuously bind to the HLA-DRB1 supertype.  相似文献   

6.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

7.
Spleen cells, resting T cells, activated T cells, and T cell clones characterized as type 1 (Th1) and type 2 (Th2) were investigated for their ability to produce interferon (IFN) following in vitro culture with Newcastle disease virus (NDV). All of the above cell populations, including both Th1 and Th2 T cell clones, produced high levels of IFN following in vitro culture with NDV. This IFN was characterized as a mixture of IFN-alpha and IFN-beta with IFN-alpha being the predominate species of IFN contained in the mixture. IL-2 greatly enhanced the production of IFN-alpha/beta by all cell populations in response to NDV. These different T cell populations responded very differently to the immunoregulatory actions of IFN-gamma versus IFN-alpha/beta. IFN-alpha/beta was shown to be a potent inhibitor of Con A or IL-2-induced proliferation of different T cell populations. This inhibition was not associated with a reduction in lymphokine production since spleen cells or Th1 T cell clones cultured with Con A and IFN-alpha/beta had no decrease in IL-2 or IFN-gamma production when compared to Con A-stimulated control cultures. IFN-gamma had little to no inhibitory activity on Con A-induced proliferation of spleen cells. In fact, Con A-induced proliferation was usually enhanced by IFN-gamma when nylon wool-enriched T cells were assessed. Different results were observed when IFN-gamma and IFN-alpha/beta were investigated for their ability to inhibit IL-2-induced proliferation of different T helper cell clones. IFN-gamma and IFN-alpha/beta were both capable of inhibiting IL-2-induced proliferation of T cell clones characterized as type 2 (Th2). In contrast, IFN-gamma had no effect on IL-2-induced proliferation of Th1 clones. IFN-alpha/beta, however, inhibited IL-2-induced proliferative responses of both Th1 and Th2 T cell clones. These results document the facts that (1) IFN-gamma and IFN-alpha/beta differ in their immunoregulatory actions, (2) different T cell subpopulations vary in their susceptibility to IFN-gamma regulation, and (3) virus induction of IFN-alpha/beta appears to be a ubiquitous function associated with different T cell populations.  相似文献   

8.
Th1-type cytokines produced by the stimulation of Th 1-type epitopes derived from defined schistosome-associated antigens are correlated with the development of resistance to the parasite infection. Schistosoma mansoni 28 kDa glutathione-S-transferase (Sm28GST), a major detoxification enzyme, has been recognized as a vaccine candidate and a phase II clinical trial has been carried out. Sheep immunized with recombinant Schistosoma japonicum 28GST (Sj28GST) have shown immune protection against the parasite infection. In the present study, six candidate peptides (P1, P2, P3, P4, P7 and P8) from Sj28GST were predicted, using software, to be T cell epitopes, and peptides P5 and P6 were designed by extending five amino acids at the N-terminal and C-terminal of P1, respectively. The peptide 190-211 aa in Sj28GST corresponding to the Th1-type epitope (190-211 aa) identified from Sm28GST was selected and named P9. The nine candidate peptides were synthesized or produced as the fusion protein with thioredoxin in the pET32c(+)/BL21(DE3) system. Their capacity to induce a Th1-type response in vitro was measured using lymphocyte proliferation, cytokine detection experiments and flow cytometry. The results showed that P6 (73-86 aa) generated the strongest stimulation effect on T cells among the nine candidate peptides, and drove the highest level of IFN-γ, and IL-2. Therefore, P6 is a functional Thl-type T cell epitope that is different from that in Sm28GST, and will be useful for the development of effective vaccines which can trigger acquired immunity against S. japonicum. Moreover, our strategy of identifying the Thl-type epitope by a combination of software prediction and experimental confirmation provides a convenient and cost-saving alternative approach to previous methods.  相似文献   

9.
Recurrent respiratory papillomatosis (RRP) is caused by human papillomavirus type 6 (HPV-6) or HPV-11. Specific HLA-DR haplotypes DRB1*01:02 and DRB1*03:01 are associated with the development of RRP, disease severity, and Th2-like responses to HPV early proteins. Th1-like responses to HPV proteins have been shown to be protective in animal models. Therefore, we investigated the hypothesis that RRP patients have dysfunctional Th1-like, HPV-specific T cell responses. Using MHC class II tetramers, we identified immunogenic peptides within HPV-11 early proteins. Two distinct peptides (E6(113-132) and E2(1-20)) contained DRB1*01:02- or DRB1*03:01-restricted epitopes, respectively. An additional peptide (E2(281-300)) contained an epitope presented by both alleles. Peptide binding, tetramer, and proliferation assays identified minimal epitopes within these peptides. These epitopes elicited E2/E6-specific CD4(+) T cell responses in RRP patients and healthy control subjects, allowing the isolation of HPV-specific T cell lines using tetramers. The cytokine profiles and STAT signaling of these tetramer-positive T cells were measured to compare the polarization and responsiveness of HPV-specific T cells from patients with RRP and healthy subjects. HPV-specific IFN-γ secretion was substantially lower in T cells from RRP patients. HPV-specific IL-13 secretion was seen at modest levels in T cells from RRP patients and was absent in T cells from healthy control subjects. HPV-specific T cells from RRP patients exhibited reduced STAT-5 phosphorylation and reduced IL-2 secretion, suggesting anergy. Levels of STAT-5 phosphorylation and IFN-γ secretion could be improved through addition of IL-2 to HPV-specific T cell lines from RRP patients. Therapeutic vaccination or interventions aimed at restoring Th1-like cytokine responses to HPV proteins and reversing anergy could improve clinical outcomes for RRP patients.  相似文献   

10.
After Ag and/or mitogen stimulation, cloned mouse Th1 and Th2 cells produce different cytokines that contribute to induction of particular B cell isotype responses. In this regard, IL-5 produced by Th2 cells has been shown to enhance IgA synthesis in LPS-triggered splenic (SP) B cell or in unstimulated Peyer's patch (PP) B cell cultures. This raises the possibility that Th2 cells may occur in higher frequency in gut-associated tissues, because B cells in these areas are committed to IgA synthesis. We have used an ELISPOT assay to detect individual T cells producing IFN-gamma or IL-5. For the IL-5 assay, the mAb TRFK-5 and biotinylated TRFK-4 were used in coating and detection, respectively, whereas the mAb R4-6A2 and biotinylated XMG 1.2 were similarly used for enumeration of IFN-gamma-specific spot forming cells (SFC). Specificity of each assay was tested by using Con A-activated, cloned Th1 (H66-61) or Th2 (CDC-25) cells, where the Th1 cells only produced IFN-gamma SFC and the Th2 cells only gave IL-5-specific spots. Further, preincubation of biotinylated TRFK-4 or XMG 1.2 with rIL-5 or IFN-gamma, respectively, abrogated the formation of specific spots when tested with Con A-activated SP CD4+ T cells. Both IFN-gamma and IL-5 were produced de novo, because treatment of T cells with cycloheximide inhibited both IFN-gamma and IL-5 SFC. We have assessed the numbers of T cells spontaneously secreting these cytokines in PP and in lamina propria and intraepithelial lymphocyte (LPL and IEL) populations. Moderate levels of IL-5 SFC occurred in the IEL subset, whereas higher levels existed in the LPL population. Although significant numbers of IFN-gamma SFC (Th1-type) were also seen in LPLs, the frequency of IL-5 SFC was always higher (Th1:Th2 in LPL = 1:3). In IELs, equal numbers of IFN-gamma and IL-5 SFC were seen. Interestingly, CD8+ IEL T cells produced these two cytokines. In contrast, T cells freshly isolated from PP, an IgA inductive site, contained smaller numbers of IL-5- or IFN-gamma-secreting cells and SP T cells had essentially no SFC. When PP or SP T cells were stimulated with Con A, significant and approximately equal numbers of IFN-gamma- and IL-5-producing cells appeared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

12.
Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines   总被引:24,自引:0,他引:24  
A large panel of CD8+ mouse T cell clones expressed the cytokine synthesis pattern characteristic of Th1 clones. CD8+ clones synthesized IFN-gamma and lymphotoxin at levels similar to Th1 clones, whereas IL-2 was synthesized by only 50% of the clones and at significantly lower levels compared to Th1 clones. CD8+ clones also produced substantial amounts of granulocyte/macrophage-CSF, TY5, P500, and TNF-alpha which are expressed preferentially by Th1 clones and at lower levels by Th2 clones. The level of IL-3 produced by CD8+ clones was approximately 10% of that produced by Th1 and Th2 clones. Some CD8+ clones expressed low levels of the Th2-preferential product preproenkelphalin. None of the CD8+ clones expressed detectable levels of the Th2-specific products IL-4, IL-5, and P600, and the great majority did not express IL-6. The cytokine profile of CD8+ clones is representative of that secreted by activated normal CD8+ splenocytes, which includes IFN-gamma, low levels of IL-2 and IL-3 but no IL-4 or IL-5. Inasmuch as many Th1/Th2 functions are cytokine mediated, the striking similarity of the Th1 and CD8+ cytokine secretion patterns helps to explain why these two cell types share certain functions such as DTH, and also suggests that further common functions may be discovered in the future.  相似文献   

13.
Suplatast tosilate (IPD-1151T) is an antiallergic agent that suppresses airway eosinophil infiltration in asthma. We investigated the effects of IPD-1151T on proliferative response and cytokine production by human antigen-specific T cell lines. Purified protein derivatives (PPD)-specific T helper 1 (Th1) cell lines and Dermatophagoides farinae (Der f)-specific T helper 2 (Th2) cell lines were established from patients with asthma sensitized with house dust mite. Stimulation of PPD-specific and Der f-specific T cell lines with relevant antigens resulted in production of mostly interferon (IFN)-gamma and of interleukin (IL)-4 and IL-5, respectively. IPD-1151T did not inhibit the proliferative responses of either the Th1 or Th2 cell line to antigens. Although IPD-1151T did not inhibit IFN-gamma production by PPD-specific Th1 cell lines, it did inhibit IL-4 and IL-5 production by antigen-stimulated Der f-specific Th2 cell lines in a dose-dependent manner. IPD-1151T directly inhibited cytokine production by Der f-specific Th2 cell lines stimulated with immobilized anti-CD3 antibodies. Although IPD-1151T did not inhibit the clonal expansion of memory T cells among PBMCs into PPD-specific Th1 and Th2 cell lines, it did inhibit IL-4 and IL-5 production by Der f-specific Th2 cell lines but not IFN-gamma production by PPD-specific Th1 cell lines. These results suggest that IPD-1151T selectively inhibits Th2-type cytokine production.  相似文献   

14.
Carrier (KLH)-specific type 1 T cell clones (Th1), which are defined by secretion of IL-2 and IFN-gamma but not IL-4, and type 2 (Th2) clones, which secrete IL-4, but not IL-2 or IFN-gamma, have been isolated and analyzed for their ability to collaborate in providing help for B cells to secrete phosphorylcholine-specific IgM antibodies. The resulting antibody responses exhibited a characteristic pattern suggesting two distinct regulatory interactions among the Th1, Th2, and B cells. At low doses of antigen, Th1 cells enhanced the helper function of the Th2 cells, an effect due primarily to IL-2. At high doses of antigen, Th1 cells or IFN-gamma inhibited Th2-dependent antibody responses. The inhibitory effect of Th1 or IFN-gamma affected primarily the hapten-carrier-linked portion of the response. The overall effect was a modulation of the antigen dose-response curve for antibody production, eliminating the sharp increases in dose response mediated by isolated T cell clones. The data suggest that collaborative interactions of Th1 and Th2 cells in antibody production may have important physiological consequences.  相似文献   

15.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

16.
Th1 and Th2 cells are counterinhibitory; their balance determines allergic sensitization. We show here that CD8 T cell subsets break these rules as both T cytotoxic (Tc)1 and Tc2 cells promote Th1 over Th2 immunity. Using IL-12(-/-), IFN-gamma(-/-), and OVA(257-264)-specific Valpha2Vbeta5 TCR-transgenic mice, we have identified the key steps involved. OVA-specific IFN-gamma(-/-) CD8 T cells inhibited IgE responses equivalent to wild-type CD8 T cells (up to 98% suppression), indicating that CD8 T cell-derived IFN-gamma was not required. However, OVA-specific CD8 T cells could not inhibit IgE in IFN-gamma(-/-) recipients unless reconstituted with naive, wild-type CD4 T cells, suggesting that CD4 T cell-derived IFN-gamma did play a role. Transfer of either Tc1 or Tc2 Valpha2Vbeta5 TCR-transgenic CD8 T cells inhibited IgE and OVA-specific Th2 cells while promoting OVA-specific Th1 cell responses, suggesting a potential role for a type 1 inducing cytokine such as IL-12. CD8 T cells were shown to induce IL-12 in OVA(257-264)-pulsed dendritic cells (DC) in vitro. Furthermore, CD8 T cells were unable to inhibit IgE responses in IL-12(-/-) recipients without the addition of naive, wild-type DC, thus demonstrating a pivotal role for IL-12 in this mechanism. These data reveal a mechanism of IgE regulation in which CD8 T cells induce DC IL-12 by an IFN-gamma-independent process that subsequently induces Th1 and inhibits Th2 cells. Th1 cell IFN-gamma is the final step that inhibits B cell IgE class switching. This demonstrates a novel regulatory network through which CD8 T cells inhibit allergic sensitization.  相似文献   

17.
Theiler's murine encephalomyelitis virus induces immune-mediated demyelination in susceptible mice after intracerebral inoculation. A naturally occurring, low pathogenic Theiler's murine encephalomyelitis virus variant showed a single amino acid change within a predominant Th epitope from lysine to arginine at position 244 of VP1. This substitution is the only one present in the entire viral capsid proteins. In this paper, we demonstrate that the majority of T cells specific for VP1(233-250) and VP2(74-86) from wild-type virus-infected mice are Th1 type and these VP1-specific cells poorly recognize the variant VP1 epitope (VP1(K244R)) containing the substituted arginine. In contrast, the Th2-type T cell population specific for these epitopes predominates in variant virus-infected mice. Immunization with UV-inactivated virus or VP1 epitope peptides could not duplicate the preferential Th1/Th2 responses following viral infection. Interestingly, the major APC populations, such as dendritic cells and macrophages, produce IL-12 on exposure to the pathogenic wild-type virus, whereas they preferentially produce IL-10 in response to the low pathogenic variant virus. Thus, such a spontaneous mutant virus may have a profoundly different capability to induce Th-type responses via selective production of cytokines involved in T cell differentiation and the consequent pathogenicity of virally induced immune-mediated inflammatory diseases.  相似文献   

18.
Adjuvant arthritis (AA) is induced by immunizing Lewis rats with Mycobacterium tuberculosis suspended in adjuvant. The mycobacterial 65-kDa heat shock protein (HSP65) contains at least one epitope associated with the pathogenesis of AA: T cell clones that recognize an epitope formed by aa 180-188 of HSP65 react with self-cartilage and can adoptively transfer AA. Nevertheless, vaccination with HSP65 or some of its T cell epitopes can prevent AA by a mechanism that seems to involve cross-reactivity with the self-60-kDa HSP60. We recently demonstrated that DNA vaccination with the human hsp60 gene can inhibit AA. In the present work, we searched for regulatory epitopes using DNA vaccination with HSP60 gene fragments. We now report that specific HSP60 DNA fragments can serve as effective vaccines. Using overlapping HSP60 peptides, we identified a regulatory peptide (Hu3) that was specifically recognized by the T cells of DNA-vaccinated rats. Vaccination with Hu3, or transfer of splenocytes from Hu3-vaccinated rats, inhibited the development of AA. Vaccination with the mycobacterial homologue of Hu3 had no effect. Effective DNA or peptide vaccination was associated with enhanced T cell proliferation to a variety of disease-associated Ags, along with a Th2/3-like shift (down-regulation of IFN-gamma secretion and enhanced secretion of IL-10 and/or tumor growth factor beta1) in response to peptide Mt176-190 (the 180-188 epitope of HSP65). The regulatory response to HSP60 or its Hu3 epitope included both Th1 (IFN-gamma) and Th2/3 (IL-10/tumor growth factor beta1) secretors. These results show that regulatory mechanisms can be activated by immunization with relevant self-HSP60 epitopes.  相似文献   

19.
Russo, D. M., Chakrabarti, P., and Higgins, A. Y. 1999. Leishmania: Naive human T cells sensitized with promastigote antigen and IL-12 develop into potent Th1 and CD8(+) cytotoxic effectors. Experimental Parasitology 93, 161-170. The differentiation of naive human T cells into Leishmania-specific Th1 or cytotoxic effector cells was examined by sensitizing T cells in vitro with dead Leishmania antigen in the presence or absence of IFN-gamma or IL-12. These Leishmania-specific T cell lines proliferated and produced cytokines in response to challenge with autologous Leishmania-infected macrophages. Sensitization in the presence of IL-12 or IFN-gamma induced Leishmania-specific human Th1 responses, with IL-12 inducing more potent Th1 responses. However, IL-12-induced Th1 responses were IFN-gamma dependent. T cell lines exhibited Th2 or Th0 phenotypes when primed in the absence of cytokines. Only T cell lines primed in the presence of IL-12 contained high percentages of CD8(+) cells. These cells lysed autologous Leishmania-infected but not uninfected macrophages in an MHC-dependent manner. Thus, this in vitro sensitization system can be used to delineate the conditions for optimally priming human Leishmania-specific effector cells.  相似文献   

20.
The effects exerted on the in vitro development of purified protein derivative (PPD)-specific or Dermatophagoides pteronyssinus group I (Der p I)-specific T cell lines (TCL) and T cell clones (TCC) by IL-4 or IFN-gamma addition or neutralization in human PBMC cultures were examined. PBMC from two normal individuals, which were stimulated with PPD and then cultured in IL-2 alone, developed into PPD-specific TCL and TCC able to produce IFN-gamma and IL-2 but not IL-4 and IL-5 (Th1-like). IFN-gamma or anti-IL-4 antibody addition in bulk cultures before cloning did not influence the PPD-specific TCL profile of cytokine production. In contrast, the addition of IL-4 resulted in the development of PPD-specific TCL and TCC able to produce not only IFN-gamma and IL-2 but also IL-4 and IL-5. PBMC from one atopic Der p I-sensitive patient, which were stimulated with Der p I and then cultured in IL-2 alone, developed into Der p I-specific TCL and TCC able to produce IL-5 and large amounts of IL-4 but no IFN-gamma (Th2-like). The addition in bulk cultures, before cloning, of either IFN-gamma or anti-IL-4 antibody markedly inhibited the development of Der p I-specific T cells into IL-4- and IL-5-producing TCL. Accordingly, the development into Der p I-specific Th2-like TCC was significantly reduced by the addition of IFN-gamma in bulk culture and was virtually suppressed by the presence of both IFN-gamma and anti-IL-4 antibody. These data suggest that the presence or the absence of IL-4 and IFN-gamma in bulk cultures of PBMC before cloning may have strong regulatory effects on the in vitro development of human CD4+ T cells into Th1 or Th2 clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号