首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess whether preload-adjusted maximal power (PAMP), which is calculated as W(max)/V (where W(max) is maximal power and V(ed) is end-diastolic volume with beta = 2) is an index of right ventricular (RV) contractility, we measured RV pressure (P) and volume (V) and pulmonary artery pressure and flow in 10 dogs at baseline and after inotropic stimulation. PAMP was derived from steady-state data, whereas the slope (E(es)) and intercept (V(d)) of the end-systolic P-V relationship were derived from data obtained during vena caval occlusion. Inotropic stimulation increased E(es) (from 0.96 +/- 0.25 to 1.62 +/- 0.28 mmHg/ml; P < 0.001) and V(d) (from -3.0 +/- 17.2 to 12.4 +/- 10.8 ml; P < 0.05) but not PAMP (from 0.24 +/- 0.10 to 0.36 +/- 0.22 mW/ml(2); P = 0.09). We found a strong relationship between the optimal beta-factor for preload adjustment and V(d). A corrected PAMP, PAMP(c) = W(max)/(V(ed) - V(d))(2), which incorporated the V(d) dependency, was sensitive to the inotropic changes (from 0.23 +/- 0.12 to 0.54 +/- 0.17 mW/ml(2); P < 0.001) with a good correlation with E(es) (r = 0.88; P < 0.001).  相似文献   

2.
Right ventricular (RV) maximal power (PWR(mx)) is dependent on preload. The objective of this study was to test our hypothesis that the PWR(mx) versus end-diastolic volume (EDV) relationship, analogous to the load-independent stroke work (SW) versus EDV relationship (preload-recruitable SW, PRSW), is linear, with the PWR x-axis intercept (V(0PWR)) corresponding to the PRSW intercept (V(0SW)). If our hypothesis is correct, the preload sensitivity of PWR(mx) could be eliminated by adjusting for EDV and V(0PWR). Ten dogs were instrumented with a pulmonary flow probe, micromanometers, and RV conductance catheter. Data were obtained during bicaval occlusions under various conditions and fitted to PWR(mx) = a.(EDV - V(0PWR))(beta), where a is the slope of the relationship. The PWR(mx) versus EDV relationship did not deviate from linearity (beta = 1.09, P = not significant vs. 1), and V(0PWR) correlated with V(0SW) (r = 0.93, P <0.0001). V(0PRW) was related to steady-state EDV and left ventricular end-diastolic pressure, allowing for estimation of V(0PWR) (V(0Est)) and single-beat PWR(mx) preload adjustment. Dividing PWR(mx) by the difference of EDV and V(0PWR) (PAMP(V0PWR)) eliminated preload dependency down to 50% of the baseline EDV. PWR(mx) adjustment using V(0Est) (PAMP(V0Est)) showed similar preload independency. Enhancing contractility increased PAMP(V0PWR) and PAMP(V0Est) from 176 +/- 52 to 394 +/- 205 W/ml x 10(4) and 145 +/- 51 to 404 +/- 261 W/ml x 10(4), respectively, accompanied by an increase of PRSW from 13.0 +/- 4.5 to 29.7 +/- 16.4 mmHg (all P <0.01). PAMP(V0PWR) and PAMP(V0Est) correlated with PRSW (r = 0.85; r = 0.77; both P <0.001). Numerical modeling confirmed the accuracy of our experimental data. Thus preload adjustment of PWR(mx) should consider a linear PWR(mx) versus EDV relationship with distinct V(0PWR). PAMP(V0PWR) is a preload-independent estimate of RV contractility that may eventually be determined noninvasively.  相似文献   

3.
We determined the roles of maximal systolic elastance (E(max)) and theoretical maximum flow ((max)) in the regulation of cardiac pumping function in early streptozotocin (STZ)-diabetic rats. Physically, E(max) can reflect the intrinsic contractility of the myocardium as an intact heart, and (max) has an inverse relation to the systolic resistance of the left ventricle. Rats given STZ 65 mg/kg i.v. (n = 17) were divided into two groups, 1 week and 4 weeks after induction of diabetes, and compared with untreated age-matched controls (n = 15). Left ventricular (LV) pressure and ascending aortic flow signals were recorded to calculate E(max) and (max), using the elastance-resistance model. After 1 or 4 weeks, STZ-diabetic animals show an increase in effective LV end-diastolic volume (V(eed)), no significant change in peak isovolumic pressure (P(iso)(max)), and a decline in effective arterial volume elastance (E(a)). The maximal systolic elastance E(max) is reduced from 751.5 +/- 23.1 mmHg/ml in controls to 514.1 +/- 22.4 mmHg/ml in 1- and 538.4 +/- 33.8 mmHg/ml in 4-week diabetic rats. Since E(max) equals P(iso)(max)/V(eed), an increase in V(eed) with unaltered P(iso)(max) may primarily act to diminish E(max) so that the intrinsic contractility of the diabetic heart is impaired. By contrast, STZ-diabetic rats have higher theoretical maximum flow (max) (40.9 +/- 2.8 ml/s in 1- and 44.5 +/- 3.8 ml/s in 4-week diabetic rats) than do controls (30.7 +/- 1.7 ml/s). There exists an inverse relation between (max) and E(a) when a linear regression of (max) on E(a) is performed over all animals studied (r = 0.65, p < 0.01). The enhanced (max) is indicative of the decline in systolic resistance of the diabetic rat heart. The opposing effects of enhanced (max) and reduced E(max) may negate each other, and then the cardiac pumping function of the early STZ-diabetic rat heart could be preserved before cardiac failure occurs.  相似文献   

4.
Assessment of right ventricular (RV) contractility from end-systolic pressure-volume relationships (ESPVR) is difficult due to problems in measuring RV instantaneous volume and to effects of changes in RV preload or afterload. We therefore investigated in anesthetized dogs whether RV ESPVR and contractility can be determined without measuring RV volume and without changing RV preload or afterload. The maximal RV pressure of isovolumic beats (P(max)) was predicted from isovolumic portions of RV pressure during ejecting beats and compared with P(max) measured during the first beat after pulmonary artery clamping. In RV pressure-volume loops obtained from RV pressure and integrated pulmonary arterial flow, end-systolic elastance (E(es)) was assessed as the slope of P(max)-derived ESPVR, pulmonary artery effective elastance (E(a)) as the slope of end-diastolic to end-systolic relation, and coupling efficiency as the E(es)-to-E(a) ratio (E(es)/E(a)). Predicted P(max) correlated with observed P(max) (r = 0.98 +/- 0.02). Dobutamine increased E(es) from 1.07 to 2.00 mmHg/ml and E(es)/E(a) from 1.64 to 2.49, and propranolol decreased E(es)/E(a) from 1.64 to 0.91 (all P < 0.05). After adrenergic blockade, preload reduction did not affect E(es), whereas hypoxia and arterial constriction markedly increased E(a) and somewhat increased E(es) due to the Anrep effect. Low preload did not affect E(es)/E(a) and high afterload decreased E(es)/E(a). In conclusion, in the right ventricle 1) P(max) can be calculated from normal beats, 2) P(max) can be used to determine ESPVR without change in load, and 3) P(max)-derived ESPVR can be used to assess ventricular contractility and ventricular-arterial coupling efficiency.  相似文献   

5.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury.Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). These ventilation patterns allowed a comparison between low and high V(t) without dependence on peak inspiratory pressure (PIP). Infusion of hypochlorite (1000 nmol/min) or buffer (control) was started at t=0 min. Pulmonary artery pressure (PAP), PIP and weight were continuously recorded. Capillary filtration coefficient [K(f,c) (10(-4) ml s(-1) cm H(2)O(-1) g(-1))] was gravimetrically determined (-15/30/60/90/120 min).PIP averaged 5.8+/-0.6/13.9+/-0.6/13.9+/-0.4 cm H(2)O in the LVZP, HVZP and LV5P groups. PIP, K(f,c) or PAP did not change in control groups, indicating that none of the ventilation patterns caused lung injury by themselves. Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05).Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.  相似文献   

6.
Although there are several excellent indexes of myocardial contractility, they require accurate measurement of pressure via left ventricular (LV) catheterization. Here we validate a novel noninvasive contractility index that is dependent only on lumen and wall volume of the LV chamber in patients with normal and compromised LV ejection fraction (LVEF). By analysis of the myocardial chamber as a thick-walled sphere, LV contractility index can be expressed as maximum rate of change of pressure-normalized stress (d sigma*/dt(max), where sigma* = sigma/P and sigma and P are circumferential stress and pressure, respectively). To validate this parameter, d sigma*/dt(max) was determined from contrast cine-ventriculography-assessed LV cavity and myocardial volumes and compared with LVEF, dP/dt(max), maximum active elastance (E(a,max)), and single-beat end-systolic elastance [E(es(SB))] in 30 patients undergoing clinically indicated LV catheterization. Patients with different tertiles of LVEF exhibit statistically significant differences in d sigma*/dt(max). There was a significant correlation between d sigma*/dt(max) and dP/dt(max) (d sigma*/dt(max) = 0.0075 dP/dt(max) - 4.70, r=0.88, P<0.01), E(a,max) (d sigma*/dt(max) = 1.20E(a,max) + 1.40, r=0.89, P<0.01), and E(es(SB)) [d sigma*/dt(max)=1.60 E(es(SB)) + 1.20, r=0.88, P<0.01]. In 30 additional individuals, we determined sensitivity of the parameter to changes in preload (intravenous saline infusion, n = 10 subjects), afterload (sublingual glyceryl trinitrate, n = 10 subjects), and increased contractility (intravenous dobutamine, n=10 patients). We confirmed that the index is not dependent on load but is sensitive to changes in contractility. In conclusion, d sigma*/dt(max) is equivalent to dP/dt(max), E(a,max), and E(es(SB)) as an index of myocardial contractility and appears to be load independent. In contrast to other measures of contractility, d sigma*/dt(max) can be assessed with noninvasive cardiac imaging and, thereby, should have more routine clinical applicability.  相似文献   

7.
The objective of the present study was to test the hypothesis that endogenous beta(3)-adrenoreceptor (AR) activation contributes to left ventricular (LV) and cardiomyocyte dysfunction in heart failure (CHF). Stimulation of the beta(3)-AR inhibits cardiac contraction. In the failing myocardium, beta(3)-ARs are upregulated, suggesting that stimulation of beta(3)-ARs may contribute to depressed cardiac performance in CHF. We assessed the functional significance of endogenous beta(3)-AR activation in 10 conscious dogs before and after pacing-induced CHF. Under normal conditions, L-748,337, a specific beta(3)-AR antagonist, produced a mild increase in LV contractile performance assessed by the slope (E(es)) of the LV pressure-volume relation (18%, 6.2 +/- 0.9 vs. 7.3 +/- 1.2 mmHg/ml, P < 0.05) and the improved LV relaxation time constant (tau; 28.4 +/- 1.9 vs. 26.8 +/- 1.0 ms, P < 0.05). After CHF, the plasma norepinephrine concentration increased eightfold, and L-748,337 produced a larger increase in E(es) (34%, 3.8 +/- 0.7 vs. 5.1 +/- 0.8 mmHg/ml, P < 0.05) and a greater decrease in tau (46.4 +/- 4.2 vs. 41.0 +/- 3.9 ms, P < 0.05). Similar responses were observed in isolated myocytes harvested from LV biopsies before and after CHF. In the normal myocyte, L-748,337 did not cause significant changes in contraction or relengthening. In contrast, in CHF myocytes, L-748,337 produced significant increases in contraction (5.8 +/- 0.9 vs. 6.8 +/- 0.9%, P < 0.05) and relengthening (33.5 +/- 4.2 vs. 39.7 +/- 4.0 microm/s, P < 0.05). The L-748,337-induced myocyte response was associated with improved intracellular Ca(2+) concentration regulation. In CHF myocytes, nadolol caused a decrease in contraction and relengthening, and adding isoproterenol to nadolol caused a further depression of myocyte function. Stimulation of beta(3)-AR by endogenous catecholamine contributes to the depression of LV contraction and relaxation in CHF.  相似文献   

8.
This study examined energy expenditure and physiologic determinants for marathon performance in recreational runners. Twenty recreational marathon runners participated (10 males aged 41 +/- 11.3 years, 10 females aged 42.7 +/- 11.7 years). Each subject completed a V(.-)O2max and a 1-hour treadmill run at recent marathon pace, and body composition was indirectly determined via dual energy X-ray absorptiometry. The male runners exhibited higher V(.-)O2max (ml x kg(-1) x min(-1)) values (52.6 +/- 5.5) than their female counterparts (41.9 +/- 6.6), although ventilatory threshold (T-vent) values were similar between groups (males: 76.2 +/- 6.1 % of V(.-)O2max, females: 75.1 +/- 5.1%). The male runners expended more energy (2,792 +/- 235 kcal) for their most recent marathon as calculated from the 1-hour treadmill run at marathon pace than the female runners (2,436 +/- 297 kcal). Body composition parameters correlated moderately to highly (r ranging from 0.50 to 0.87) with marathon run time. Also, V(.-)O2max (r = -0.73) and ventilatory threshold (r = -0.73) moderately correlated with marathon run time. As a group, the participants ran near their ventilatory threshold for their most recent marathon (r = 0.74). These results indicate the influence of body size on marathon run performance. In general, the larger male and female runners ran slower and expended more kilocalories than smaller runners. Regardless of marathon finishing time, the runners maintained a pace near their T-vent, and as T-vent or V(.-)O2max increased, marathon performance time decreased.  相似文献   

9.
To study the force-velocity characteristics of human knee-hip extension movement, a dynamometer, in which force was controlled by a servo system, was developed. Seated subjects pressed either bilaterally or unilaterally a force plate, a horizontal position of which was servo-controlled so as to equalize the measured force and a force command generated by a computer at a time resolution of 2 ms (force clamp). The force command was based on the relation between maximum isometric force and foot position within the range between 70% and 90% of "leg length" (LL: longitudinal distance between the sole of the foot and the hip joint), so that the same force relative to the maximum isometric force was consistently applied regardless of the foot position. By regulating the force according to this function, the force-velocity relation was determined. The force-velocity relation obtained was described by a linear function (n=17, r=-0.986 for 80% LL, r=-0.968 for 85% LL) within a range of force between 0.1 and 0.8F(0) (maximum isometric force). The maximum force extrapolated from the linear regression (F(max)) coincided with F(0) (n=17, F(0)/F(max)=1.00+/-0.09 for 80% LL and 1.00+/-0.20 for 85% LL). Also, the velocity at zero force (V(max)) was obtained from the extrapolation. When compared to the bilateral movements, unilateral movements gave rise to a smaller F(max) but the same V(max), suggesting that V(max) is independent of force and therefore represents the proper unloaded velocity. It is suggested that some neural mechanisms may be involved in the force-velocity relation of the knee-hip extension movement, and make it exhibit a linear appearance rather than a hyperbola.  相似文献   

10.
11.
Intrinsic skeletal muscle abnormalities decrease muscular endurance in chronic heart failure (CHF). In CHF patients, the number of skeletal muscle Na(+)-K(+) pumps that have a high affinity for ouabain (i.e., the concentration of [(3)H]ouabain binding sites) is reduced, and this reduction is correlated with peak oxygen uptake. The present investigation determined whether the concentration of skeletal muscle [(3)H]ouabain binding sites found during CHF is related to 1) severity of the disease state, 2) muscle fiber type composition, and/or 3) endurance capacity. Four muscles were chosen that represented slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), and mixed fiber types. Measurements were obtained 8-10 wk postsurgery in 23 myocardial infarcted (MI) and 18 sham-operated control (sham) rats. Eighteen rats had moderate left ventricular (LV) dysfunction [LV end-diastolic pressure (LVEDP) < 20 mmHg], and five had severe LV dysfunction (LVEDP > 20 mmHg). Rats with severe LV dysfunction had significant pulmonary congestion and were likely in a chronic state of compensated congestive failure as indicated by an approximately twofold increase in both lung and right ventricle weight. Run time to fatigue and maximal oxygen uptake (VO(2 max)) were significantly reduced ( downward arrow39 and downward arrow28%, respectively) in the rats with severe LV dysfunction and correlated with the magnitude of LV dysfunction as indicated by LVEDP (run time: r = 0.60, n = 21, P < 0.01 and VO(2 max): r = 0.93, n = 13, P < 0.01). In addition, run time to fatigue was significantly correlated with VO(2 max) (r = 0.87, n = 15, P < 0.01). The concentration of [(3)H]ouabain binding sites (B(max)) was significantly reduced (21-28%) in the three muscles comprised primarily of oxidative fibers [soleus: 259 +/- 14 vs. 188 +/- 17; plantaris: 295 +/- 17 vs. 229 +/- 18; red portion of gastrocnemius: 326 +/- 17 vs. 260 +/- 14 pmol/g wet tissue wt]. In addition, B(max) was significantly correlated with VO(2 max) (soleus: r = 0.54, n = 15, P < 0.05; plantaris: r = 0.59, n = 15, P < 0.05; red portion of gastrocnemius: r = 0.65, n = 15, P < 0.01). These results suggest that downregulation of Na(+)-K(+) pumps that possess a high affinity for ouabain in oxidative skeletal muscle may play an important role in the exercise intolerance that attends severe LV dysfunction in CHF.  相似文献   

12.
13.
We investigated the hemodynamic determinants of the age-associated decline in maximal oxygen uptake (V(O2 max)) and the influence of gender on the decline in V(O2 max) and its determinants in old and very old men and women. Sedentary, 60- to 92-yr-old women (n = 71) and men (n = 29), with no evidence of cardiovascular disease, underwent maximal treadmill exercise tests during which V(O2 max) and maximal cardiac output (Q(max)) were determined. V(O2 max) and age were inversely related in both women (-23 +/- 2 ml.min(-1).yr(-1); P < 0.0001) and men (-57 +/- 5 ml.min(-1).yr(-1); P < 0.0001). The absolute slope of the V(O2 max) vs. age relationship was twofold steeper in men than in women (P < 0.0001). Q(max) was also inversely related to age in a gender-specific manner (women = -87 +/- 25 ml.min(-1).yr(-1), P = 0.0009; men = -215 +/- 50 ml.min(-1).yr(-1), P = 0.0002; P = 0.01 women vs. men). Age-related changes in maximal exercise arteriovenous oxygen content difference (a-vD(O2)) were marginally different (P = 0.08) between women (-0.12 +/- 0.03 ml.dl(-1).yr(-1), P = 0.0003) and men (-0.22 +/- 0.04 ml.dl(-1).yr(-1), P < 0.0001). Age-associated decreases in Q(max) and a-vD(O2) contributed equally to the declines in V(O2 max) in both men and women. In the later stages of life, V(O2 max), Q(max), and a-vD(O2) decrease with age more rapidly in older men than they do in older women. As a result, the gender differences dissipate in the later decades of life. Declines in Q(max) and a-vD(O2) contribute equally to the age-related decrease in V(O2 max) in men and women.  相似文献   

14.
Nineteen healthy male subjects, differing in training status and Vo2max (52 +/- 1 ml.min-1.kg-1, mean +/- SEM; 43-64 ml.min-1.kg-1, range), exercised for 1 h at an absolute workload of 192 +/- 8 W (140-265 W); this was equivalent to 70 +/- 1% Vo2max (66-74%). Each exercise test was performed on an electrically braked cycle ergometer at a constant ambient temperature (22.5 +/- 0.0 degrees C) and relative humidity (85 +/- 0%). Nude body weight was recorded prior to and after each exercise test. Absolute sweat loss (body weight loss corrected for respiratory weight loss) during each test was 910 +/- 82 g (426-1665 g); this was equivalent to 1.3 +/- 0.1% (0.7-2.2%) of pre-exercise body weight (relative sweat loss). Weighted mean skin temperature and rectal temperature increased after 5 min of exercise from 30.5 +/- 0.3 degrees C and 37.2 +/- 0.1 degrees C respectively to 32.5 +/- 0.2 degrees C and 38.8 +/- 0.1 degrees C respectively, recorded immediately prior to the end of exercise. Bivariate linear regression and Pearson's correlation demonstrated absolute sweat loss was related to Vo2max (r = 0.72, p less than 0.001), absolute exercise workload (r = 0.66, p less than 0.01), body surface area (r = 0.62, p less than 0.01), weight (r = 0.60, p less than 0.01) and height (r = 0.53, p less than 0.05). Relative sweat loss was related to VO2max (r = 0.77, P less than 0.001) and absolute exercise workload (R = 0.59, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The aim of this study was to examine the effects of maximal aerobic power (V(.-)O2max peak) level on the ability to repeat sprints (calculated as performance decrement and total sprinting time) in young basketball players. Subjects were 18 junior, well-trained basketball players (age, 16.8 +/- 1.2 years; height, 181.3 +/- 5.7 cm; body mass, 73 +/- 10 kg; V(.-)O2max peak, 59.6 +/- 6.9 ml x kg(-1) x min(-1)). Match analysis and time-motion analysis of competitive basketball games was used to devise a basketball-specific repeated-sprint ability protocol consisting of ten 15-m shuttle run sprints with 30 s of passive recovery. Pre, post, and post plus 3-minute blood lactate concentrations were 2.5 +/- 0.7, 13.6 +/- 3.1, and 14.2 +/- 3.5 mmol x L(-1), respectively. The mean fatigue index (FI) value was 3.4 +/- 2.3% (range, 1.1-9.1%). No significant correlations were found between V(.-)O2max peak and either FI or total sprint time. A negative correlation (r = -0.75, p = 0.01) was found between first-sprint time and FI. The results of this study showed that V(.-)O2max peak is not a predictor of repeated-sprint ability in young basketball players. The high blood lactate concentrations found at the end of the repeated-sprint ability protocol suggest its use for building lactate tolerance in conditioned basketball players.  相似文献   

16.
Whereas end-systolic and end-diastolic pressure-volume relations (ESPVR, EDPVR) characterize left ventricular (LV) pump properties, clinical utility of these relations has been hampered by the need for invasive measurements over a range of pressure and volumes. We propose a single-beat approach to estimate the whole EDPVR from one measured volume-pressure (Vm and Pm) point. Ex vivo EDPVRs were measured from 80 human hearts of different etiologies (normal, congestive heart failure, left ventricular assist device support). Independent of etiology, when EDPVRs were normalized (EDPVRn) by appropriate scaling of LV volumes, EDPVRns were nearly identical and were optimally described by the relation EDP = An.EDV (Bn), with An = 28.2 mmHg and Bn = 2.79. V0 (the volume at the pressure of approximately 0 mmHg) was predicted by using the relation V0 = Vm.(0.6 - 0.006.Pm) and V30 by V30 = V0 + (Vm,n - V0)/(Pm/An) (1/Bn). The entire EDPVR of an individual heart was then predicted by forcing the curve through Vm, Pm, and the predicted V0 and V30. This technique was applied prospectively to the ex vivo human EDPVRs not used in determining optimal An and Bn values and to 36 in vivo human, 12 acute and 14 chronic canine, and 80 in vivo and ex vivo rat studies. The root-mean-square error (RMSE) in pressure between measured and predicted EDPVRs over the range of 0-40 mmHg was < 3 mmHg of measured EDPVR in all settings, indicating a good predictive value of this approach. Volume-normalized EDPVRs have a common shape, despite different etiology and species. This allows the entire curve to be predicted by a new method with a potential for noninvasive application. The results are most accurate when applied to groups of hearts rather than to individual hearts.  相似文献   

17.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

19.
The slope of the preload recruitable stroke work relationship (M(w)) is a highly linear, load-insensitive contractile index. To investigate whether M(w) can be determined from a single steady-state beat, 45 patients were studied during cardiac catheterization. Single-beat M(w) (SBM(w)) was calculated directly from the baseline stroke work and baseline left ventricular (LV) end-diastolic volume (EDV(B)), and the volume-axis intercept (V(w)) was estimated as k x EDV(B) + (k - 1) x LV(wall), where k is the ratio of the epicardial shell volumes corresponding to V(w) and EDV(B) and LV(wall) is the wall volume. The mean of individual k values was 0.72 +/- 0.04, which correlated with LV mass significantly (r = 0.60, P < 0.001). SBM(w) calculated from a constant k of 0.7 predicted M(w) well (r = 0.88, P < 0.0001), and the prediction improved slightly when k was estimated from individual LV mass (r = 0.93, P < 0.0001). Subgroup analyses revealed that the single-beat technique also worked in patients with small or large LV mass or volume or with regional wall motion abnormalities. The absolute change in SBM(w) after dobutamine infusion also correlated with that in M(w). In conclusion, M(w) can be estimated from a steady-state beat without alteration of preload.  相似文献   

20.
C-type natriuretic peptide (CNP) significantly increases in chronic heart failure (CHF) patients as a function of clinical severity. Aim of this study was to evaluate in CHF patients the relationship between circulating CNP concentrations and echo-Doppler conventional indices of left ventricular (LV) function as well as less load independent parameters as dP/dt. LV ejection fraction (EF), left ventricular end-diastolic dimension (LVEDD) and LV dP/dt were evaluated together with plasma CNP levels in 38 patients with CHF and in 63 controls. CNP levels resulted significantly higher in CHF patients than in controls (7.19+/-0.59 pg/ml vs. 2.52+/-0.12 pg/ml, p<0.0001). A significant correlation between dP/dt and CNP levels (r=-0.61, p<0.0001) was observed. A good correlation with EF (r=-0.55, p<0.001) and a less significant relation with LVEDD (r=0.316, p<0.05) were also reported. When patients were divided according to dP/dt values a very significant difference in CNP levels was observed: Group I (<600, n=25) vs. Group II (>600, n=13): 8.46+/-0.69 and 4.75+/-0.75 pg/ml, respectively, p<0.001. This is the first study that reports a correlation between CNP and dP/dt in CHF patients, thus suggesting a possible role on cardiac contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号