首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of dietary L-carnitine and coenzyme Q10 (CoQ10) at different supplemental ages on performance and some immune response were investigated in ascites-susceptible broilers. A 3 x 2 x 2 factorial design was used consisting of L-carnitine supplementation (0, 75, and 100 mg/kg), CoQ10 supplementation (0 and 40 mg/kg) and different supplemental ages (from day 1 on and from day 10 on). A total of 480 one-day-old Arbor Acre male broiler chicks were randomly allocated to 12 groups, every group had five replicates, each with eight birds. The birds were fed a corn-soybean based diet for six weeks. From day 10-21, all the birds were exposed to a low ambient temperature (12-15 degrees C) to increase the susceptibility to ascites. No significant effects were observed on growth performance by L-carnitine, CoQ10 supplementation, and different supplemental ages. Packed cell volume was significantly decreased by L-carnitine supplementation alone, and ascites heart index and ascites mortality were decreased by L-carnitine, CoQ10 supplementation alone, and L-carnitine + CoQ10 supplementation together (p < 0.05). Heart index of broilers was significantly improved by L-carnitine, CoQ10 supplementation alone during 0-3 week. Serum IgG content was improved by L-carnitine supplementation alone (p < 0.05), but lysozyme activity was increased by L-carnitine + CoQ10 supplementation together (p < 0.05). A significant L-carnitine by supplemental age interaction was observed in lysozyme activity. L-carnitine supplementation alone had no effects on the peripheral blood lymphocyte (PBL) proliferation in response to concanavalin A (ConA) and lipopolysaccharide, but supplemental CoQ10 alone and L-carnitine+ CoQ10 together decreased the PBL proliferation in response to ConA (p < 0.05). The present study suggested that L-carnitine + CoQ10 supplementation together had positive effects on some immune response of ascites-susceptible broilers, which might benefit for the reduction of broilers' susceptibility to ascites.  相似文献   

2.
3.
Poly(ADP-ribose)polymerase (PARP-1), a nuclear enzyme activated by DNA strand breaks, is involved in DNA repair, aging, inflammation, and neoplastic transformation. In diabetes, reactive oxygen and nitrogen species occurring in response to hyperglycemia cause DNA damages and PARP-1 activation. Because circulating mononuclear cells (MNCs) are involved in inflammation mechanisms, these cells were chosen as the experimental model to evaluate PARP-1 levels and activity in patients with type 2 diabetes. MNCs were isolated from 25 diabetic patients (18 M, 7 F, age, 63.5 +/- 10.2 years, disease duration 17.7 +/- 8.2 years) and 11 age and sex matched healthy controls. PARP-1 expression and activity were analyzed by semi-quantitative PCR, Western and activity blot, and immunofluorescence microscopy. PARP-1-mRNA expression was increased in MNCs from all diabetic patients versus controls (P < 0.01), whereas PARP-1 content and activity were significantly lower in diabetic patients (P < 0.0001). To verify whether low PARP-1 levels and activity were due to a proteolytic effect of caspase-3 like, the latter activation was measured by a fluorimetric assay. Caspase-3 activity in MNCs was significantly higher in diabetic patients versus control subjects (P < 0.0001). The different PARP-1 behavior in MNCs from patients with type 2 diabetes could therefore be responsible for the abnormal inflammation and infection responses in diabetes.  相似文献   

4.
There is a wide inter-individual variation in PARP-1 {PAR [poly(ADP-ribose)] polymerase 1} activity, which may have implications for health. We investigated if the variation: (i) is due to polymorphisms in the PARP-1 gene or PARP-1 protein expression; and (ii) affects patients' response to anticancer treatment. We studied 56 HV (healthy volunteers) and 118 CP (cancer patients) with supporting in vivo experiments. PARP activity ranged between 10 and 2600 pmol of PAR/106 cells and expression between 0.02-1.55 ng of PARP-1/μg of protein. PARP-1 expression correlated with activity in HV (R2=0.19, P=0.003) and CP (R2=0.06, P=0.01). A short CA repeat in the promoter was significantly associated with increased cancer risk [OR (odds ratio), 5.22; 95% CI (confidence interval), 1.79-15.24]. PARP activity was higher in men than women (P=0.04) in the HV. Male mice also had higher PARP activity than females or castrated males. Oestrogen supplementation activated PARP in PBMCs (peripheral blood mononuclear cells) from female mice (P=0.003), but inhibited PARP-1 in their livers by 80%. PARP activity and expression were not dependent on the investigated polymorphisms, but there was a modest correlation of PARP activity with expression. Studies in the HV revealed sex differences in PARP activity, which was confirmed in mice and shown to be associated with sex hormones. Toxic response to treatment was not associated with PARP activity and/or expression.  相似文献   

5.
The possible involvement of poly(ADP-ribose) polymerase [PARP; E.C. 2.4.2.30] in the adaptive response to low-g conditions was studied in cultured adult rat hepatocytes exposed to simulated microgravity produced by the random positioning machine (RPM-3D-clinostat). Four different poly(ADP-ribose) polymerases (PARPs) have been identified recently. The best-studied member of this family is PARP-1, a highly conserved, multimodular 113 kDa protein. In multicellular organisms PARPs catalyze poly(ADP-ribose) synthesis from NAD+ to a number of structural and catalytic proteins. Moreover, PARP-1 can control its protein and DNA interactions by catalyzing its automodification with poly(ADP-ribose) molecules that can include up to 200 ADP-ribose residues and several branching points; by these polymers, PARP-1 may nocovalently interact with other proteins and alter their functions. PARP-1 binds to DNA and is activated by free ends interacting with several other DNA damage checkpoint proteins. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions. Poly(ADP-ribosyl)ation plays a central role in genome stability and is involved in DNA replication and repair, gene expression, cell differentiation and transformation. We have shown that a loss of PARP-1 activity is a critical event in the early molecular steps of the hepatocarcinogenesis process. Moreover, a prompt increase in this enzymatic activity is linked not only to the presence of DNA free ends but is linked also to the start of DNA synthesis. More recently, we have reported that PARP-1 is involved in hormone-mediated gene expression in vitro and in vivo during rat liver regeneration.  相似文献   

6.
The emerging role of poly(ADP-ribose) polymerase-1 in longevity   总被引:3,自引:0,他引:3  
In the present paper, the involvement of the family of poly(ADP-ribose) polymerases (PARPs), and especially of PARP-1, in mammalian longevity is reviewed. PARPs catalyse poly(ADP-ribosyl)ation, a covalent post-translational protein modification in eukaryotic cells. PARP-1 and PARP-2 are activated by DNA strand breaks, play a role in DNA base-excision repair (BER) and are survival factors for cells exposed to low doses of ionising radiation or alkylating agents. PARP-1 is the main catalyst of poly(ADP-ribosyl)ation in living cells under conditions of DNA breakage, accounting for about 90% of cellular poly(ADP-ribose). DNA-damage-induced poly(ADP-ribosyl)ation also functions as a negative regulator of DNA damage-induced genomic instability. Cellular poly(ADP-ribosyl)ation capacity in permeabilised mononuclear blood cells (MNC) is positively correlated with life span of mammalian species. Furthermore PARP-1 physically interacts with WRN, the protein deficient in Werner syndrome, a human progeroid disorder, and PARP-1 and WRN functionally cooperate in preventing carcinogenesis in vivo. Some of the other members of the PARP family have also been revealed as important regulators of cellular functions relating to ageing/longevity. In particular, tankyrase-1, tankyrase-2, PARP-2 as well as PARP-1 have been found in association with telomeric DNA and are able to poly(ADP-ribosyl)ate the telomere-binding proteins TRF-1 and TRF-2, thus blocking their DNA-binding activity and controlling telomere extension by telomerase.  相似文献   

7.
Summary Treatment in vitro of human peripheral blood lymphocytes (PBL) with ConA induced the generation of suppressor cells which inhibited T cell blastogenic response to ConA and of allogeneic response in the mixed lymphocyte reaction (MLR). Treatment of PBL with 4-hydroperoxycyclophosphamide (4-HPCy) before incubation with ConA markedly decreased the generation of suppressor cells by ConA. The effect of 4-HPCy on generation of suppressor cells was more pronounced in the test of ConA stimulation than in the MLR. Treatment with 4-HPCy had no effect on suppressor cells already induced as shown by incubation of PBL with 4-HPCy after incubation with ConA.  相似文献   

8.
9.
10.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus. Previously, we have reported that nucleolar PARP-1 is delocalized to the nucleoplasm in cells exposed to DNA-damaging agents. However, the functional roles of this delocalization in cellular response to DNA damage is not well understood, since this approach simultaneously induces the delocalization of PARP-1 and its automodification. We therefore devised an approach for separating these processes. Unmodified PARP-1 was first delocalized from the nucleolus using camptothecin. Then, PARP-1 was activated by exposure of cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). In contrast to treatment with MNNG alone, delocalization of PARP-1 by CPT, prior to its activation by MNNG, induced extensive automodification of PARP-1. DNA repair activity and consumption of intracellular NAD+ were not affected by this activation. On the other hand, activation led to an increased formation of apoptotic cells, and this effect was suppressed by inhibition of PARP-1 activity. These results suggest that delocalization of PARP-1 from the nucleolus to the nucleoplasm sensitizes cells to DNA damage-induced apoptosis. As it has been suggested that the nucleolus has a role in stress sensing, nucleolar PARP-1 could participate in a process involved in nucleolus-mediated stress sensing.  相似文献   

11.
The enzymatic mechanism of poly(ADP-ribose) polymerase (PARP-1) has been analyzed in two in vitro systems: (a) in solution and (b) when the acceptor histones were attached to a solid surface. In system (a), it was established that the coenzymatic function of dsDNAs was sequence-independent. However, it is apparent from the calculated specificity constants that the AT homopolymer is by far the most effective coenzyme and randomly damaged DNA is the poorest. Rates of auto(poly-ADP-ribosylation) with dsDNAs as coenzymes were nearly linear for 20 min, in contrast to rates with dcDNA, which showed product [(ADPR)n] inhibition. An allosteric activation of auto(poly-ADP-ribosylation) by physiologic cellular components, Mg2+, Ca2+, and polyamines, was demonstrated, with spermine as the most powerful activator. On a molar basis, histones H(1) and H(3) were the most effective PARP-1 activators, and their action was abolished by acetylation of lysine end groups. It was shown in system (b) that oligo(ADP-ribosyl) transfer to histone H(1) is 1% of that of auto(poly-ADP-ribosylation) of PARP-1, and this trans(ADP-ribosylation) is selectively regulated by putrescine (activator). Physiologic cellular concentrations of ATP inhibit PARP-1 auto(poly-ADP-ribosylation) but less so the transfer of oligo(ADP-ribose) to histones, indicating that PARP-1 auto(ADP-ribosylation) activity is dormant in bioenergetically intact cells, allowing only trans(ADP-ribosylation) to take place. The inhibitory mechanism of ATP on PARP-1 consists of a noncompetitive interaction with the NAD site and competition with the coenzymic DNA binding site. A novel regulation of PARP-1 activity and its chromatin-related functions by cellular bioenergetics is proposed that occurs in functional cells not exposed to catastrophic DNA damage.  相似文献   

12.
Summary A murine osteosarcoma in which the number of tumor cells can be continually monitored by measuring the circulating plasma alkaline phosphatase levels was used to determine the effect of tumor burden on peripheral blood and splenic lymphocyte response to mitogens. In animals with tumors of different sizes, the pattern of response of the peripheral blood lymphocytes (PBL) to mitogens is different from that of splenic lymphocytes. PBL response to ConA, PHA, and LPS was initially depressed, but response to PHA and LPS recovered later, as the tumor burden exceeded 6%. However, the recovery of LPS response was not consistent, in that recovery was not seen when the tumor burden was 5%–6%. Response to ConA remained depressed. Splenic lymphocytes showed progressive decline of PHA response. Treatment of tumor-bearing mice with 2-mercaptoethanol (2-ME) restored the ConA response of PBL in 56% of mice. Treatment with 2-ME did not restore PBL response to PHA or LPS. Abbreviations used in this paper: PBL, peripheral blood lymphocytes; peripheral blood lymphocytes; ConA, concanavalin A; PHA, phytohemagglutinin; LPS, lipopolysaccharide; 2-ME, 2-mercaptoethanol; FCS, fetal calf serum; AP, alkaline phosphatase; OS, osteosarcoma  相似文献   

13.
14.
Oxygen-based therapies expose lung to elevated levels of ROS and induce lung cell damage and inflammation. Injured cells are replaced through increased proliferation and differentiation of epithelial cells and fibroblasts. Failure to modulate these processes leads to excessive cell proliferation, collagen deposition, fibrosis, and chronic lung disease. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA damage and participates in DNA repair, genomic integrity, and cell death. In this study, we evaluated the role of PARP-1 in lung repair during recovery after acute hyperoxia exposure. We exposed PARP-1 -/- and wild-type mice for 64 h to 100% hyperoxia and let them recover in air for 5-21 days. PARP-1-deficient mice exhibited significantly higher lung cell hyperplasia and proliferation than PARP-1 +/+ animals after 5 and 10 days of recovery. This was accompanied by an increased inflammatory response in PARP-1 -/- compared with wild-type animals, characterized by neutrophil infiltration and increased IL-6 levels in bronchoalveolar lavages. These lesions were reversible, since the extent of the hyperplastic regions was reduced after 21 days of recovery and did not result in fibrosis. In vitro, lung primary fibroblasts derived from PARP-1 -/- mice showed a higher proliferative response than PARP-1 +/+ cells during air recovery after hyperoxia-induced growth arrest. Altogether, these results reveal an essential role of PARP-1 in the control of cell repair and tissue remodeling after hyperoxia-induced lung injury.  相似文献   

15.
16.
17.
In mammalian cells, the nucleosome-binding protein HMGN1 (high mobility group N1) affects the structure and function of chromatin and plays a role in repair of damaged DNA. HMGN1 affects the interaction of DNA repair factors with chromatin and their access to damaged DNA; however, not all of the repair factors affected have been identified. Here, we report that HMGN1 affects the self-poly(ADP-ribosyl)ation (i.e., PARylation) of poly(ADP-ribose) polymerase-1 (PARP-1), a multifunctional and abundant nuclear enzyme known to recognize DNA lesions and promote chromatin remodeling, DNA repair, and other nucleic acid transactions. The catalytic activity of PARP-1 is activated by DNA with a strand break, and this results in self-PARylation and PARylation of other chromatin proteins. Using cells obtained from Hmgn1(-/-) and Hmgn1(+/+) littermate mice, we find that in untreated cells, loss of HMGN1 protein reduces PARP-1 self-PARylation. A similar result was obtained after MMS treatment of these cells. In imaging experiments after low energy laser-induced DNA damage, less PARylation at lesion sites was observed in Hmgn1(-/-) than in Hmgn1(+/+) cells. The HMGN1 regulation of PARP-1 activity could be mediated by direct protein-protein interaction as HMGN1 and PARP-1 were found to interact in binding assays. Purified HMGN1 was able to stimulate self-PARylation of purified PARP-1, and in experiments with cell extracts, self-PARylation was greater in Hmgn1(+/+) than in Hmgn1(-/-) extract. The results suggest a regulatory role for HMGN1 in PARP-1 activation.  相似文献   

18.
19.
Ye F  Cheng Q  Hu Y  Zhang J  Chen H 《PloS one》2012,7(5):e37446
PARP-1 is a nuclear enzyme that plays an important role in DNA repair, recombination, proliferation and the genome stability. The PARP-1 Val762Ala polymorphism has been associated with increased risk of developing cancers of the prostate, esophagus and lung. The aim of this study was to determine whether the PARP-1 Val762Ala polymorphism is associated with the risk of cervical carcinoma. MA-PCR was used to genotype the PARP-1 Val762Ala polymorphism in 539 women with cervical carcinoma, 480 women with CIN and 800 controls. The genotyping method was confirmed by the DNA sequencing analysis. The PARP-1 Val762Ala polymorphism was not associated with the risk of CIN. However, women carrying the PARP-1 Ala762Ala genotype were significantly susceptible to cervical carcinoma (OR: 2.70, 95% CI: 1.47-3.70), and the similar results were also found in squamous cell carcinoma (OR: 2.56, 95% CI: 1.47-3.70). In HPV positive population, the PARP-1 Ala762Ala genotype was also associated with increased risk of cervical carcinoma (OR: 5.56, 95% CI: 2.08-14.3). Our results indicate that the PARP-1 Ala762Ala genotype increases the risk of cervical carcinoma.  相似文献   

20.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in multi-pathways to respond to DNA damage. Lack of or inhibition of PARP-1 activity leads to slow progress of cell cycle and sensitization of cells to different stresses. Recently, it was reported that besides the Ku- dependent main non-homologous end joining (NHEJ) pathway, there is a PARP-1-dependent complementary NHEJ pathway to repair DNA double strand break (DSB). Here we show that compared with PARP-1+/+ cells, PARP-1-/- cells display a much stronger G2 checkpoint response following ionizing radiation (IR). Treatment with Chk1 siRNA abolishes the stronger G2 checkpoint response and sensitizes PARP-1-/- cells to IR. These data indicate that the stronger G2 checkpoint response in PARP-1-/- cells is CHK1-dependent, which protects cells from IR-induced killing. We also show that 4-Amino-1,8-naphthalimide (4-AN, inhibitor of PARP) but not methoxyamine (inhibitor of base excision repair (BER)), affects IR-induced G2 arrest and cell sensitivity in PARP-1+/+ cells, resulting in the phenotypes similar to those of PARP-1-/- cells. These results indicate that DSB repair from the complementary NHEJ pathway of PARP-1, but not single strand break (SSB) repair from the BER function of PARP-1, may play an essential role in the over-activated CHK1 regulated G2 checkpoint response and radiosensitivity in PARP-1-/- cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号