首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Je JH  Lee JY  Jung KJ  Sung B  Go EK  Yu BP  Chung HY 《FEBS letters》2004,566(1-3):183-189
4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-kappaB) activation in endothelial cells. HHE induced NF-kappaB activation by inhibitor of kappaB (IkappaB) phosphorylation via the IkappaB kinase (IKK)/NF-kappaB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH(2)-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-kappaB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IkappaB phosphorylation, and NF-kappaB luciferase activity. These findings strongly suggest that HHE induces NF-kappaB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells.  相似文献   

3.
Nuclear factor-kappaB (NF-kappaB) is the main target of anti-inflammatory therapies in human chronic inflammatory bowel diseases (IBD), Crohn disease, and ulcerative colitis. This study investigates the molecular anti-inflammatory mechanisms of SB203580, an inhibitor of the mitogen-activated protein kinase p38. The murine trinitrobenzene sulfonic acid (TNBS)-induced colitis was used as an established model of human Crohn disease. Here we show that SB203580 improved the clinical condition, reduced intestinal inflammation, and suppressed mRNA levels of pro-inflammatory cytokines elevated upon induction of colitis. Besides p38 kinase activity, the "classical" IkappaB-dependent NF-kappaB pathway was strongly up-regulated during colitis induction, whereas the "alternative" was not. SB203580 treatment resulted in a drastic down-regulation of p38 and NF-kappaB activity. The molecular analysis of NF-kappaB activation revealed that Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK), a key component of a pathway leading to NF-kappaB induction, is also strongly inhibited by SB203580. In contrast, SB203580 had no effect on the colitis-induced activation of other potential NF-kappaB-activating kinases such as protein kinase C (PKC), mixed lineage kinase 3, and the oncogene product Cot/TPL2. Thus, the inhibitory effect of SB203580 on NF-kappaB activation is to a large extent mediated by RICK inhibition. RICK is the effector kinase of the intracellular receptor of bacterial peptidoglycan NOD. Because bacterial products are suggested to be the key pathogenic agents triggering IBD, inhibition of the NOD/RICK pathway may serve as a novel target of future therapies in human IBD.  相似文献   

4.
5.
Nitric oxide (NO), reported as an important inducer of apoptosis, plays a considerable role in the pathogenetic mechanisms of articular diseases. This research aimed at investigating the role of p38 MAPK signal transduction pathway on apoptosis induced by NO in rabbit articular chondrocytes. In the present study, NO was produced by a novel NO donor NOC-18. Rabbit articular chondrocytes were cultured as monolayer, and the first passage cells were used for the experiments. We detected apoptosis induced by NO using Annexin V-FITC/PI flow cytometry and TUNEL assay. Measurement of caspase-3 has reflected its activity level. Western blotting was performed to show the protein expressions of p38, NF-kappaB, p53 and caspase-3. Furthermore, we examined the inhibitory effects in the NO pathway with p38-specific inhibitor SB203580. Treatment with NOC-18 caused accelerated apoptosis in a concentration dependent manner. This acceleration was able to be reduced when added to SB203580. Besides, the inhibitor could significantly decrease NO-induced p38, NF-kappaB, p53 and caspase-3 protein expressions, as well as caspase-3 intracellular activity (P<0.05). These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB, p53 and caspase-3 activation.  相似文献   

6.
Enterovirus 71 (EV71) is a widespread virus that causes severe and fatal diseases in patients, including circulation failure. The mechanisms underlying EV71-initiated intracellular signaling pathways to influence host cell functions remain unknown. In this study, we identified a requirement for PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB in the regulation of VCAM-1 expression by rat vascular smooth muscle cells (VSMCs) in response to viral infection. EV71 induced VCAM-1 expression in a time- and viral concentration-dependent manner. Infection of VSMCs with EV71 stimulated VCAM-1 expression and phosphorylation of PDGFR, Akt, and p38 MAPK which were attenuated by AG1296, wortmannin, and SB202190, respectively. The phosphorylation of JNK stimulated by EV71 was not detected under present conditions. In contrast, JNK inhibitor SP600125 inhibited EV71-induced VCAM-1 expression. Furthermore, VCAM-1 expression induced by EV71 was significantly attenuated by a selective NF-kappaB inhibitor (helenalin). Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha as well as VCAM-1 mRNA expression was blocked by helenalin, AG1296, SB202190, SP600125, wortmannin, and LY294002. Moreover, the involvement of p38 MAPK, PI3-K/Akt, and NF-kappaB in EV71-induced VCAM-1 expression was reveled by that transfection with dominant negative plasmids of p38 MAPK, p85, Akt, NIK, IKK-alpha, and IKK-beta attenuated these responses. These findings suggest that in VSMCs, EV71-induced VCAM-1 expression was mediated through activation of PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB pathways.  相似文献   

7.
8.
9.
10.
11.
12.
In this study, we examined the signal transduction of dibutyryl cyclic adenosine monophosphate (dBcAMP) to stimulate the release of nitric oxide (NO) and interleukin-6 (IL-6) from J774 macrophages. These actions of dBcAMP were diminished by the presence of the inhibitors of protein kinase A (PKA), protein kinase C (PKC), p38 MAPK and nuclear factor-kappa B (NF-kappaB). In contrast, Go 6976 and PD98059 had no significant effects. Consistently, dBcAMP caused membrane translocation of PKCbetaII, delta, mu, lambda and zeta isoforms, and increased atypical protein kinase C (aPKC) and p38 MAPK activities. The nuclear translocation and DNA-binding study revealed that dBcAMP stimulated NF-kappaB, activator protein-1 (AP-1), and CAAT/enhancer-binding protein (c/EBPbeta). Via PKA, PKC and p38 MAPK-dependent signals, dBcAMP also induced inhibitory subunit of NF-kappaB (IkappaB) degradation, IkappaB kinase (IKK) activation, nuclear translocation of NF-kappaB subunit p65 and its association with the CREB-binding protein (CBP). These results illustrate that PKA activation in macrophages is able to stimulate PKC and p38 MAPK, which lead to IKK-dependent NF-kappaB activation and contribute to the induction of inducible nitric oxide synthase (iNOS) and IL-6 genes.  相似文献   

13.
14.
15.
16.
17.
18.
Curcumin (diferulolylmethane) demonstrates profound anti-inflammatory effects in intestinal epithelial cells (IEC) and in immune cells in vitro and exhibits a protective role in rodent models of chemically induced colitis, with its presumed primary mechanism of action via inhibition of NF-kappaB. Although it has been demonstrated effective in reducing relapse rate in ulcerative colitis patients, curcumin's effectiveness in Crohn's disease (CD) or in Th-1/Th-17 mediated immune models of CD has not been evaluated. Therefore, we investigated the effects of dietary curcumin (0.1-1%) on the development of colitis, immune activation, and in vivo NF-kappaB activity in germ-free IL-10(-/-) or IL-10(-/-);NF-kappaB(EGFP) mice colonized with specific pathogen-free microflora. Proximal and distal colon morphology showed a mild protective effect of curcumin only at 0.1%. Colonic IFN-gamma and IL-12/23p40 mRNA expression followed similar pattern ( approximately 50% inhibition at 0.1%). Secretion of IL-12/23p40 and IFN-gamma by colonic explants and mesenteric lymph node cells was elevated in IL-10(-/-) mice and was not decreased by dietary curcumin. Surprisingly, activation of NF-kappaB in IL-10(-/-) mice (phospho-NF-kappaBp65) or in IL-10(-/-);NF-kappaB(EGFP) mice (whole organ or confocal imaging) was not noticeably inhibited by curcumin. Furthermore, we demonstrate that IL-10 and curcumin act synergistically to downregulate NF-kappaB activity in IEC and IL-12/23p40 production by splenocytes and dendritic cells. In conclusion, curcumin demonstrates limited effectiveness on Th-1 mediated colitis in IL-10(-/-) mice, with moderately improved colonic morphology, but with no significant effect on pathogenic T cell responses and in situ NF-kappaB activity. In vitro studies suggest that the protective effects of curcumin are IL-10 dependent.  相似文献   

19.
IFN-gamma has significant immunoregulatory activity and plays an important role in both innate and adaptive immunity. Additive effects of IFN-gamma and the Toll-like receptor ligand LPS has been investigated in macrophages, but in fibroblasts is incompletely understood. IFN-gamma and LPS synergistically induced MCP-1 and NO release in primary murine dermal fibroblasts. IFN-gamma enhanced LPS-induced JNK and p38 MAPK phosphorylation but had no effect on NF-kappaB activity. The induction of both MCP-1 and NO was attenuated by inhibition of JNK but not p38 MAPK. Serine 727 STAT1 phosphorylation by IFN-gamma was increased by LPS, and this was also attenuated by inhibition of JNK but not p38 MAPK. IFN-gamma inhibited the basal expression of MAPK phosphatase-1, a negative regulator of MAPK signaling pathway. These results suggest that enhancement of LPS-induced JNK activation by IFN-gamma associated with inhibition of MAPK phosphatase-1 may be one of the mechanisms of additive effects between IFN-gamma and LPS in fibroblasts.  相似文献   

20.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号