首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrest of DNA replication in the terminus region of the Escherichia coli chromosome is mediated by protein-DNA complexes composed of the Tus protein and 23 base pair sequences generically called Ter sites. We have characterized the in vitro binding of purified Tus protein to a 37-base pair oligodeoxyribonucleotide containing the TerB sequence. The measured equilibrium binding constant (KD) for the chromosomal TerB site in KG buffer (50 mM Tris-Cl, 150 mM potassium glutamate, 25 degrees C, pH 7.5, 0.1 mM dithiothreitol, 0.1 mM EDTA, and 100 micrograms/ml bovine serum albumin) was 3.4 x 10(-13) M. Kinetic measurements in the same buffer revealed that the Tus-TerB complex was very stable, with a half-life of 550 min, a dissociation rate constant of 2.1 x 10(-5) s-1, and an association rate constant of 1.4 x 10(8) M-1 s-1. Similar measurements of Tus protein binding to the TerR2 site of the plasmid R6K showed an affinity 30-fold lower than the Tus-TerB interaction. This difference was due primarily to a more rapid dissociation of the Tus-TerR2 complex. Using standard chemical modification techniques, we also examined the DNA-protein contacts of the Tus-TerB interaction. Extensive contacts between the Tus protein and the TerB sequence were observed in the highly conserved 11 base-pair "core" sequence common to all identified Ter sites. In addition, protein-DNA contact sites were observed in the region of the Ter site where DNA replication is arrested. Projection of the footprinting data onto B-form DNA indicated that the majority of the alkylation interference and hydroxyl radical-protected sites were arranged on one face of the DNA helix. We also observed dimethyl sulfate protection of 2 guanine residues on the opposite side of the helix, suggesting that part of the Tus protein extends around the double helix. The distribution of contacts along the TerB sequence was consistent with the functional polarity of the Tus-Ter complex and suggested possible mechanisms for the impediment of protein translocation along DNA.  相似文献   

2.
We have examined the binding processes of ethidium bromide interacting with calf thymus DNA using photoacoustic spectroscopy. These binding processes are generally investigated by a combination of absorption or fluorescence spectroscopies with hydrodynamic techniques. The employment of photoacoustic spectroscopy for the DNA-ethidium bromide system identified two binding manners for the dye. The presence of two isosbestic points (522 and 498 nm) during DNA titration was evidence of these binding modes. Analysis of the photoacoustic amplitude signal data was performed using the McGhee-von Hippel excluded site model. The binding constant obtained was 3.4 x 10(8) M(bp)(-1), and the number of base pairs excluded to another dye molecule by each bound dye molecule (n) was 2. A DNA drug dissociation process was applied using sodium dodecyl sulfate to elucidate the existence of a second and weaker binding mode. The dissociation constant determined was 0.43 mM, whose inverse value was less than the previously obtained binding constant, demonstrating the existence of the weaker binding mode. The calculated binding constant was adjusted by considering the dissociation constant and its new value was 1.2 x 10(9) M(bp)(-1) and the number of excluded sites was 2.6. Using the photoacoustic technique it is also possible to obtain results regarding the dependence of the quantum yield of the dye on its binding mode. While intercalated between two adjacent base pairs the quantum yield found was 0.87 and when associated with an external site it was 0.04. These results reinforce the presence of these two binding processes and show that photoacoustic spectroscopy is more extensive than commonly applied spectroscopies.  相似文献   

3.
DNase I footprinting of the interaction between the replication terminator protein (RTP) of Bacillus subtilis and the inverted repeat region (IRR) at the chromosome terminus, to which it binds to block the clockwise replication fork, showed that two major regions of 41 base pairs (bp) were protected from cleavage. These regions corresponded approximately to the imperfect inverted repeats (IRI and IRII) identified previously. Band retardation analyses of the interaction between RTP and portions of the IRR established that each inverted repeat (IRI or IRII) contained two RTP binding sites. By sedimentation equilibrium in the ultracentrifuge, RTP was found to exist as a dimer of 29 kDa at neutral pH and concentrations above 0.2 g/l. Quantitative studies of the RTP-IRR interaction using [3H]RTP and [32P]IRR showed that the fully saturated complex contained eight RTP monomers per IRR. It is concluded that a dimer of RTP binds to each of the four sites in IRR. The apparent dissociation constant for the interaction was estimated (in the presence of 50% glycerol) to be 1.2 x 10(-11) M (dimer of RTP). Glycerol was found to have a marked effect on the affinity of RTP for the IRR and on the relative amounts of the interaction complexes formed; in the absence of glycerol the dissociation constant was approximately 50-fold higher and there was pronounced co-operative binding of RTP dimers to adjacent sites in each inverted repeat. Examination of the DNA sequence in IRI and IRII identified two 8 bp direct repeats in each. The regions protected from DNase I cleavage in each inverted repeat and the protection afforded by a core sequence spanning just one of the 8 bp direct repeats were consistent with each 8 bp repeat representing a recognition sequence for the RTP dimer. A model describing the binding of RTP to the IRR is presented.  相似文献   

4.
5.
6.
Matsuno H  Niikura K  Okahata Y 《Biochemistry》2001,40(12):3615-3622
We have systematically designed and synthesized six kinds of 16-17 mer alanine-based peptides containing four to six lysine (K) and one to four asparagine (N) residues to achieve the selective binding to A.T base pairs of DNA duplexes. The position and number of K and N residues were changed in the helical structure according to common features of the DNA-binding proteins, in which K and N residues are expected to interact electrostatically with phosphate groups and to interact with A.T base pairs by hydrogen bonding, respectively. The time courses of binding of these peptides to dA(30).dT(30) and dG(30).dC(30) duplexes immobilized on a 27 MHz quartz crystal microbalance (QCM) were studied in 10 mM phosphate buffer (pH 7.5) and 40 mM NaCl at 10 degrees C. The maximum binding amounts (Deltam(max)) on a nanogram scale and binding constants (K(a)) could be obtained from the frequency decrease (mass increase) of the oligonucleotide-immobilized QCM. The conformation changes of the peptides upon binding to DNAs were monitored by circular dichroism (CD) spectroscopy. The four properly arranged N residues in the six-cationic K peptide, K6N4(d), resulted in a 5-fold higher affinity for A.T base pairs (K(a) = 5.9 x 10(5) M(-1)) than for G.C base pairs (K(a) = 1.2 x 10(5) M(-1)), and alpha-helices were clearly promoted by the binding to A.T base pairs from CD spectral changes.  相似文献   

7.
Binding of purified K99 fimbriae to cryostat sections of pig small intestine was detected. Binding sites were located in the mucus layer, but not in the submucosal connective tissue. High-Mr mucin glycopeptides from pig small intestine were found to bind to K99-fimbriated enterotoxigenic Escherichia coli, in contrast to non-fimbriated cells. Sialic acid specificity of K99 fimbriae was demonstrated by the significant reduction in binding upon desialylation of mucin glycopeptides. The binding was saturable and the dissociation constant was estimated to be 6 x 10(-7) M. Fimbriated bacteria were calculated to possess 2.3 x 10(3) binding sites per cell.  相似文献   

8.
Effects of different end sequences on stability, circular dichroism spectra (CD), and enzyme binding properties were investigated for six 22-base pair, non-self-complementary duplex DNA oligomers. The center sequences of these deoxyoligonucleotides have 8-14 base pairs in common and are flanked on both sides by sequences differing in context and A-T content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming a two-state melting transition. Melting free energies (20 degrees C) of the six DNAs evaluated from DSC experiments ranged from -18.7 to -32.7 kcal/mol. van't Hoff estimates of the free energies ranged from -18.5 to -48.0 kcal/mol. With either method, the trends in free energy as a function of sequence were identical. Equilibrium binding by BamHI restriction endonuclease to the 22-base pair DNAs was also investigated. The central eight base pairs of all six molecules, 5'-A-GGATCC-A-3', contained a BamHI recognition sequence bounded by A-T base pairs. Magnesium free binding assays were performed by titering BamHI against a constant concentration of each of the deoxyoligonucleotide substrates and analyzing reaction products by gel retardation. Binding isotherms of the total amount of bound DNA versus protein concentration were constructed which provided semiquantitative estimates of the equilibrium dissociation constants for dissociation of BamHI from the six DNA oligomers. Dissociation constants ranged from 0.5 x 10(-)(9) to 12.0 x 10(-)(9) M with corresponding binding free energies of -12.5 to -10.6 (+/-0. 1) kcal/mol. An inverse relationship is found when binding and stability are compared.  相似文献   

9.
S-Adenosylhomocysteine (AdoHcy) hydrolase regulates biomethylation and homocysteine metabolism. It has been proposed to be a copper binding protein playing an important role in copper transport and distribution. In the present work, the kinetics of binding and releasing of copper ions was studied using fluorescence method. The dissociation constant for copper ions with AdoHcy hydrolase was determined by fluorescence quenching titration and activity titration methods using ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and glycine as competitive chelators. The experimental results showed that copper ions bind to AdoHcy hydrolase with a K(d) of approximately 10(-11) M. The association rate constant was determined to be 7 x 10(6) M(-1)s(-1). The releasing of copper ions from the enzyme was found to be biphasic with a k(1) of 2.8 x 10(-3) s(-1) and k(2) of 1.7x10(-5) s(-1). It is suggested that copper ions do not bind to the substrate binding sites because the addition of adenine substrate did not compete with the binding of copper to AdoHcy hydrolase. Interestingly, it was observed that EDTA could bind to AdoHcy hydrolase with a dissociation constant of K(1) = 8.0 x 10(-5) M and result in an increased affinity (K(d) = approximately 10(-17) M) of binding of copper ions to the enzyme.  相似文献   

10.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

11.
M W Van Dyke  P B Dervan 《Biochemistry》1983,22(10):2373-2377
The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.  相似文献   

12.
Naphthyridine dimer composed of two naphthyridine chromophores and a linker connecting them strongly, and selectively, binds to the guanine-guanine mismatch in duplex DNA. The kinetics for the binding of the G-G mismatch to the naphthyridine dimer was investigated by surface plasmon resonance assay. The sensor surface was prepared by immobilizing naphthyridine dimer through a long poly(ethylene oxide) linker with the ligand density of 9.1 x 10(-12) fmolnm(-2). The kinetic analyses revealed that the binding of the G-G mismatch was sequence dependent on the flanking base pairs, and the G-G mismatches flanking at least one G-C base pair bound to the surface via a two-step process with a 1:1 DNA-ligand stoichiometry. The first association rate constant for the binding of the G-G mismatch in the 5'-CGG-3'/3'-GGC-5' sequence to the naphthyridine dimer-immobilized sensor surface was 3.2 x 10(3)M(-1)s(-1) and the first dissociation rate constant was 1.4 x 10(-2)s(-1). The association and dissociation rate constants for the second step were insensitive to the flanking sequences, and were almost of the same order of magnitude as the first dissociation rate constant. This indicates that the second step had only a small energetic contribution to the binding. The association constant calculated from kinetic parameters was 2.7 x 10(5)M(-1), which is significantly smaller than the apparent association constants obtained from experiments in solution. Electrospray ionization time-of-flight (ESI-TOF) mass spectrometry on the complex produced from the G-G mismatch and naphthyridine dimer showed the formation of the 1:1 complex and a 1:2 DNA-ligand complex in solution. The latter complex became the dominant complex when a six-fold excess of naphthyridine dimer was added to DNA.  相似文献   

13.
14.
The acid-basic properties of ellipticine have been re-estimated. The apparent pK of protonation at 3 microM drug concentration is 7.4 +/- 0.1. The ellipticine free base (at pH 9, I = 25 mM) intercalates into calf-thymus DNA with an affinity constant of 3.3 +/- 0.2 X 10(5) M-1, and a number of binding sites per phosphate of 0.23. The ellipticinium cation (pH 5, I = 25 mM) binds also to DNA with a constant of 8.3 +/- 0.2 x 10(5) M-1 and at a number of binding sites (n = 0.19). It is postulated that the binding of the drug to DNA at pH 9 is driven by hydrophobic and/or dipolar effects. Even at pH 5, where ellipticine exists as a cation, it is thought that the hydrophobic interaction is the main contribution to binding. The neutral and cationic forms share common binding within DNA sites but yield to structurally different complexes. The free base has 0.04 additional specific binding sites per phosphate. As determined from temperature-jump experiments, the second-order rate constant of the binding of the free base (pH 9) is 3.4 x 10(7) M-1 s-1 and the residence time of the base within the DNA is 8 ms. The rate constant for the binding of the ellipticinium cation is 9.8 x 10(7) M-1 s-1 when it is assumed that drug attachment occurs via a pathway in which the formation of an intermediate ionic complex is not involved (competitive pathway).  相似文献   

15.
Recently, we have obtained evidence in favor of a structural interaction between the epidermal growth factor (EGF) receptor and the Triton X-100-insoluble cytoskeleton of epidermoid carcinoma A431 cells. Here we present a further analysis of the properties of EGF receptors attached to the cytoskeleton. Steady-state EGF binding studies, analyzed according to the Scatchard method, showed that A431 cells contain two classes of EGF-binding sites: a high-affinity site with an apparent dissociation constant (KD) of 0.7 nM (7.5 x 10(4) sites per cell) and a low-affinity site with a KD of 8.5 nM (1.9 x 10(6) sites per cell). Non-equilibrium binding studies revealed the existence of two kinetically distinguishable sites: a fast-dissociating site, with a dissociation rate constant (k-1) of 1.1 x 10(-3) s-1 (1.0-1.3 x 10(6) sites per cell) and a slow-dissociating site, with a k-1 of 3.5 x 10(-5) s-1 (0.6-0.7 x 10(6) sites per cell). The cytoskeleton of A431 cells was isolated by Triton X-100 extraction. Scatchard analysis revealed that approximately 5% of the original number of receptors were associated with the cytoskeleton predominantly via high-affinity sites (KD = 1.5 nM). This class of receptors is further characterized by the presence of a fast-dissociating component (k-1 = 2.0 x 10(-3) s-1) and a slow-dissociating component (k-1 = 9.1 x 10(-5) s-1). The distribution between fast and slow sites of the cytoskeleton was similar to that of intact cells (65% fast and 35% slow sites). Incubation of A431 cells for 2 h at 4 degrees C in the presence of EGF resulted in a dramatic increase in the number of EGF receptors associated to the cytoskeleton. These newly cytoskeleton-associated receptors appeared to represent low-affinity binding sites (KD = 7 nM). Dissociation kinetics also revealed an increase of fast-dissociating sites. These results indicate that at 4 degrees C EGF induces the binding of low-affinity, fast-dissociating sites to the cytoskeleton of A431 cells.  相似文献   

16.
We have examined the binding of [3H]bradykinin to bovine myometrial membranes and assessed its sensitivity to guanine nucleotides. Total binding displayed a typical B2 kinin receptor specificity. However, saturation binding isotherms were resolved into at least two components with KD values of 8 pM (45%) and 378 pM (55%). Low affinity binding exhibited relatively rapid rates of association (kobs = 1.40 x 10(-2) s-1) and dissociation (k-1 = 3.82 x 10(-3) s-1), while high affinity binding exhibited considerably slower rates (kobs = 9.52 x 10(-4) s-1 and k-1 = 4.43 x 10(-5) s-1). Pre-equilibrium dissociation kinetics revealed that formation of high affinity binding was characterized as a time-dependent accumulation of the slow dissociation rate at the expense of at least one other more rapid dissociation rate. In the presence of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), at least two binding components were resolved with KD values of 37 pM (12%) and 444 pM (88%). Gpp(NH)p apparently specifically perturbed high affinity binding by completely preventing the accumulation of the slow dissociation phase. Instead, two more rapid dissociation rates (k-1 = 8.53 x 10(-3) s-1 and 4.43 x 10(-4) s-1) were observed. These results suggest that [3H]bradykinin interacts with at least two B2 kinin receptor-like binding sites in bovine myometrial membranes. A three-state model for the guanine nucleotide-sensitive agonist interaction with the high affinity binding sites is proposed.  相似文献   

17.
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.  相似文献   

18.
Mitoxantrone (MXT), an anti-tumor antibiotic, shows irreversible electrochemical behavior at a waxed graphite electrode in a 0.05 M Tris-HCl buffer (pH 7.4) solution. The interaction between MXT and calf thymus DNA (ctDNA) in solution has been studied using cyclic voltammetry. An electrochemical equation suitable for examining the binding of irreversibly electroactive molecules to DNA is established. Determination of diffusion coefficients of both free and binding MXT (D(f), D(b)), the binding constant (K) and binding site size (s base pairs per molecule, bp) of MXT with DNA was performed on the basis of the equation. A nonlinear fit analysis of the experimental data yielded: D(f)=3.76 x 10(-5) cm(2)s(-1), D(b)=2.73 x 10(-7) cm(2)s(-1), K=8.7 x 10(9) cm(3)mol(-1), s=2.8 bp. The results demonstrate that MXT binds tightly to ctDNA and covers three base pairs. The anthraquinone of MXT, which is a planar heterocyclic ring, intercalates between the DNA's base pairs. The two aminoethylamino side-chains of the drug fit to the major groove reinforce the combination of MXT and DNA. The results show that MXT is a DNA intercalator with a high binding constant compared to those of other anthraquinones.  相似文献   

19.
ABF1 binding sites in yeast RNA polymerase genes   总被引:18,自引:0,他引:18  
  相似文献   

20.
The sex hormone-binding globulin (SHBG) receptor was solubilized from the membranes of human prostate glands with the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid). The binding activity of the soluble receptor was measured by allowing it to bind to 125I-SHBG and precipitating the complex with polyethylene glycol-8000. The binding activity was stable for at least 4 months at -20 degrees C and had a half-life of 23 days at 4 degrees C. Like the membrane-bound receptor, Scatchard analysis revealed two sets of binding sites for the soluble one. At equilibrium (24 h), the high affinity site had an association constant (KA) of 6.8 x 10(8) M-1 and a binding capacity of 1.4 pmol/mg protein, whereas the low affinity site had a KA of 4.7 x 10(6) M-1 and a binding capacity of 43 pmol/mg protein. At 37 degrees C, the association rate constant (k1) was 8.37 x 10(5) M-1 min-1 and the dissociation rate constant (k2) was 3.43 x 10(-4) min-1. The soluble receptor was retarded on Sepharose CL-6B and had an apparent Mr = 167,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号