首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Mn(2+)-binding site was created in the recombinant lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. In fungal Mn peroxidase, the Mn-binding site is composed of Glu35, Glu39, and Asp179. We generated a similar site in lignin peroxidase by generating an anionic binding site. We generated three mutations: Asn182Asp, Asp183Lys, and Ala36Glu. Its activity, veratryl alcohol, and Mn(2+) oxidation were compared to those of native recombinant enzyme and to fungal Mn peroxidase isozyme H4, respectively. The mutated enzyme was able to oxidize Mn(2+) and still retain its ability to oxidize veratryl alcohol. Steady-state results indicate that the enzyme's ability to oxidize veratryl alcohol was lowered slightly. The K(m) for Mn(2+) was determined to be 1.57 mM and the k(cat) = 5.45 s(-1). These results indicate that the mutated lignin peroxidase is less effective in Mn(2+) oxidation that the wild type fungal enzyme. The pH optima of veratryl alcohol and Mn oxidation were altered by the mutation. They are one unit of pH value higher than those of recombinant H8 and wild type fungal Mn peroxidase isozyme H4.  相似文献   

2.
Recombinant Phanerochaete chrysosporium lignin peroxidase isozyme H2 (pI 4.4) was produced in insect cells infected with a genetically engineered baculovirus containing a copy of the cDNA clone lambda ML-6. The recombinant enzyme was purified to near homogeneity and is capable of oxidizing veratryl alcohol, iodide, and, to a lesser extent, guaiacol. The Km of the recombinant enzyme for veratryl alcohol and H2O2 is similar to that of the fungal enzyme. The guaiacol oxidation activity or any other activity is not dependent upon Mn2+. The purified recombinant peroxidase is glycosylated with N-linked carbohydrate(s). The recombinant lignin peroxidase eluted from an anion exchange resin similar to that of native isozyme H1 rather than H2. However, the pI of the recombinant enzymes is different from both H1 and H2 isozymes. Further characterization of native isozymes H1 and H2 from the fungal cultures revealed identical N-terminus residues. This indicates that isozymes H1 and H2 differ in post-translational modification.  相似文献   

3.
The cDNA clone lambda ML-1 encoding one of the extracellular lignin peroxidases from the white rot fungus, Phanerochaete chrysosporium, was heterologously expressed in an active form using a recombinant baculovirus system. The glycosylated extracellular form of the recombinant protein contained the ferriprotoporphyrin IX moiety and was capable of oxidizing both iodide and the model lignin compound, veratryl alcohol. In comparative peroxidase assays using guaiacol and Mn(II), the recombinant lignin peroxidase did not appear to be Mn(II) dependent. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the heterologously expressed peroxidase had an apparent molecular weight similar to that of the native fungal isozyme H8. The elution profile of the active recombinant enzyme derived by ion-exchange chromatography and immunoblot analysis using an anti-H8 monoclonal antibody provided further evidence that the lambda ML-1 DNA encodes the lignin peroxidase H8.  相似文献   

4.
Lignin and Mn peroxidases are two families of isozymes produced by the lignin-degrading fungus Phanerochaete chrysosporium under nutrient nitrogen or carbon limitation. We purified to homogeneity the three major Mn peroxidase isozymes, H3 (pI = 4.9), H4 (pI = 4.5), and H5 (pI = 4.2). Amino-terminal sequencing of these isozymes demonstrates that they are encoded by different genes. We also analyzed the regulation of these isozymes in carbon- and nitrogen-limited cultures and found not only that the lignin and Mn peroxidases are differentially regulated but also that differential regulation occurs within the Mn peroxidase isozyme family. The isozyme profile and the time at which each isozyme appears in secondary metabolism differ in both nitrogen- and carbon-limited cultures. Each isozyme also responded differently to the addition of a putative inducer, divalent Mn. The stability of the Mn peroxidases in carbon- and nitrogen-limited cultures was also characterized after cycloheximide addition. The Mn peroxidases are more stable in carbon-limited cultures than in nitrogen-limited cultures. They are also more stable than the lignin peroxidases. These data collectively suggest that the Mn peroxidase isozymes serve different functions in lignin biodegradation.  相似文献   

5.
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.  相似文献   

6.
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N-3 readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 microM. The enzyme is also stimulated to varying degrees by alpha-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism.  相似文献   

7.
M B Mayfield  K Kishi  M Alic    M H Gold 《Applied microbiology》1994,60(12):4303-4309
The promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was used to drive expression of mnp1, the gene encoding Mn peroxidase isozyme 1, in primary metabolic cultures of Phanerochaete chrysosporium. A 1,100-bp fragment of the P. chrysosporium gpd promoter region was fused upstream of the mnp1 gene to construct plasmid pAGM1, which contained the Schizophyllum commune ade5 gene as a selectable marker. pAGM1 was used to transform a P. chrysosporium ade1 auxotroph to prototrophy. Ade+ transformants were screened for peroxidase activity on a solid medium containing high carbon and high nitrogen (2% glucose and 24 mM NH4 tartrate) and o-anisidine as the peroxidase substrate. Several transformants that expressed high peroxidase activities were purified and analyzed further in liquid cultures. Recombinant Mn peroxidase (rMnP) was expressed and secreted by transformant cultures on day 2 under primary metabolic growth conditions (high carbon and high nitrogen), whereas endogenous wild-type mnp genes were not expressed under these conditions. Expression of rMnP was not influenced by the level of Mn in the culture medium, as previously observed for the wild-type Mn peroxidase (wtMnP). The amount of active rMnP expressed and secreted in this system was comparable to the amount of enzyme expressed by the wild-type strain under ligninolytic conditions. rMnP was purified to homogeneity by using DEAE-Sepharose chromatography, Blue Agarose chromatography, and Mono Q column chromatography. The M(r) and absorption spectrum of rMnP were essentially identical to the M(r) and absorption spectrum of wtMnP, indicating that heme insertion, folding, and secretion were normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Many of the extracellular lignin-degrading peroxidases from the wood-degrading fungus Phanerochaete chrysosporium are phosphorylated. Immunoprecipitation of the extracellular fluid of cultures grown with H2K32PO4 with a polyclonal antibody raised against one of the lignin peroxidase isozymes, H8 (pI 3.5), revealed the incorporation of H2K32PO4 into lignin peroxidases. Analyses of the purified isozymes from labeled cultures by isoelectric focusing showed that, in addition to isozyme H8, lignin peroxidase isozymes H2 (pI 4.4), H6 (pI 3.7), and H10 (pI 3.3) are also phosphorylated. These analyses also showed that lignin peroxidase isozyme H1 (pI 4.7) and manganese-dependent peroxidase isozymes H3 (pI 4.9) and H4 (pI 4.5) are not phosphorylated. Phosphate quantitation indicated the presence of one molecule of phosphate/molecule of enzyme for all of the phosphorylated isozymes. To locate the site of phosphorylation, one-dimensional phosphoamino acid analysis was performed with hydrolyzed 32P-protein. However, phosphotyrosine, phosphoserine, and phosphothreonine could not be identified. Coupled enzyme assays of acid hydrolysate indicated the presence of mannose 6-phosphate as the phosphorylated component on the lignin peroxidase isozymes. Digestion of the isozymes with N-glycanase released the phosphate component, indicating that the mannose 6-phosphate is contained on an asparagine-linked oligosaccharide.  相似文献   

9.
The proton stoichiometry for the oxidation of cytochrome c peroxidase (ferrocytochrome c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) to cytochrome c peroxidase Compound I by H2O2, for the reduction of cytochrome c peroxidase Compound I to cytochrome c peroxidase Compound II by ferrocyanide, and for the reduction of cytochrome c peroxidase Compound II to the native enzyme by ferrocyanide has been determined as a function of pH between pH 4 and 8. The basic stoichiometry for the reaction is that no protons are required for the oxidation of the native enzyme to Compound I, while one proton is required for the reduction of Compound I to Compound II, and one proton is required for the reduction of Compound II to the native enzyme. Superimposed upon the basic stoichiometry is a contribution due to the perturbation of two ionizable groups in the enzyme by the redox reactions. The pKa values for the two groups are 4.9 +/- 0.3 and 5.7 +/- 0.2 in the native enzyme, 4.1 +/- 0.4 and 7.8 +/- 0.2 in Compound I, and 4.3 +/- 0.4 and 6.7 +/- 0.2 in Compound II.  相似文献   

10.
The lignin peroxidase (LIP) isozyme profile of the white-rot fungus Phanerochaete chrysosporium changes markedly with culture age. This change occurs extracellularly and results from enzymatic dephosphorylation of LIP isozymes. In this study, a novel mannose 6-phosphatase (M6Pase) from extracellular culture fluid filtrate of P. chrysosporium, shown to be responsible for the extracellular postranslational modification of LIP, was purified and characterized. In vitro incubation of the purified M6Pase with purified LIP isozyme H2 resulted in its conversion to isozyme H1, with an equimolar release of orthophosphate. Using different sugar phosphates as substrate, the enzyme exhibited narrow specificity, showing activity mostly for mannose 6-phosphate (K(m) = 0.483 mM). The enzyme displayed a molecular mass of 82 kDa, as determined by gel filtration, and 40.4 and 39.1 kDa, on SDS-PAGE, suggesting that the native form is a dimer. The N-terminal sequence of the enzyme has no homology with that of other reported phosphatases. M6Pase is a metalloprotein with manganese and cobalt as the preferred metal ions. It is N-glycosylated proteins with an isoelectric point of 4. 7-4.8 and a pH optimum of 5. Based on its characteristics, M6Pase from P. chrysosporium seems to be a unique phosphatase responsible for posttranslation modification of LIP isozymes.  相似文献   

11.
A homogeneous Mn-dependent peroxidase (MnP) was purified from the extracellular culture fluid of the lignin-degrading white rot fungus Phlebia radiata by anion exchange chromatography. The enzyme had a molecular weight of 49,000 and pI 3.8. It was a glycoprotein, containing carbohydrate moieties accounting for 10% of the molecular weight. Mn-peroxidase was capable of oxidizing phenolic compounds in the presence of H2O2, whereas the effect on nonphenolic lignin model compounds was insignificant. MnP contained protoporphyrin IX as a prosthetic group. During enzymatic reactions H2O2 converted the native MnP to compound II. Mn2+ was essential in completing the catalytic cycle by returning the enzyme to its native state. The oxidation of ultimate substrates was dependent on superoxide radicals, O2- and probably on Mn3+ generated during the catalytic cycle. MnP exhibited high activity of NADH oxidation without exogenously added H2O2. It was shown to produce H2O2 at the expense of NADH.  相似文献   

12.
13.
Two types of glycosylated peroxidases are secreted by the white-rot fungus Phanerochaete chrysosporium, lignin peroxidase (LiP) and manganese peroxidase (MnP). The thermal stabilities of recombinant LiPH2, LiPH8, and MnPH4, which were expressed without glycosylation in Escherichia coli, were lower than those of corresponding native peroxidases isolated from P. chrysosporium. Recovery of thermally inactivated recombinant enzyme activities was higher than with that of the thermally inactivated native peroxidases. Removal of N-linked glycans from native LiPH8 and MnPH4 did not affect enzyme activities or thermal stabilities of the enzymes. Although LiPH2, LiPH8, and MnPH4 contained O-linked glycans, only the O-linked glycans from MnPH4 could be removed by O-glycosidase, and the glycan-depleted MnPH4 exhibited essentially the same activity as nondeglycosylated MnPH4, but thermal stability decreased. Periodate-treated MnPH4 exhibited even lower thermal stability than O-glycosidase treated MnPH4. The role of O-linked glycans in protein stability was also evidenced with LiPH2 and LiPH8. Based on these data, we propose that neither N- nor O-linked glycans are likely to have a direct role in enzyme activity of native LiPH2, LiPH8, and MnPH4 and that only O-linked glycans may play a crucial role in protein stability of native peroxidases.  相似文献   

14.
Manganese peroxidase (MnP) produced by Phanerochaete chrysosporium, which catalyzes the oxidation of Mn(2+) to Mn(3+) by hydrogen peroxide, was shown to be susceptible to thermal inactivation due to the loss of calcium [Sutherland, G. R. J.; Aust, S. D. Arch. Biochem. Biophys. 1996, 332, 128-134]. The recombinant enzyme, lacking glycosylation, was found to be more susceptible [Nie, G.; Reading, N. S.; Aust, S. D. Arch. Biochem. Biophys. 1999, 365, 328-334]. On the basis of the properties and structure of peanut peroxidase, we have engineered a disulfide bond near the distal calcium binding site of MnP by means of the double mutation A48C and A63C. The mutant enzyme had activity and spectral properties similar to those of native, glycosylated MnP. The thermostabilities of native, recombinant, and mutant MnP were studied as a function of temperature and pH. MnPA48C/A63C exhibited kinetics of inactivation similar to that of native MnP. The addition of calcium decreased the rate of thermal inactivation of the enzymes, while EGTA increased the rate of inactivation. Thermally treated MnPA48C/A63C mutant was shown to contain one calcium, and it retained a percentage of its original manganese oxidase activity; native and recombinant MnP were inactivated by the removal of calcium from the protein.  相似文献   

15.
A more efficient 2-day isolation and purification method for recombinant yeast cytochrome c peroxidase produced in Escherichia coli is presented. Two types of recombinant "wild-type" CcP have been produced and characterized, the recombinant nuclear gene sequence and the 294-amino-acid original protein sequence. These two sequences constitute the majority of the recombinant "native" or wild-type CcP currently in production and from which all recombinant variants now derive. The enzymes have been subjected to extensive physical characterizations, including sequencing, UV-visible spectroscopy, HPLC, gel electrophoresis, kinetic measurements, NMR spectroscopy, and mass spectrometry. Less extensive characterization data are also presented for recombinant, perdeuterated CcP, an enzyme produced in >95% deuterated medium. All of these results indicate that the purified recombinant wild-type enzymes are functionally and spectroscopically identical to the native, yeast-isolated wild-type enzyme. This improved method uses standard chromatography to produce highly purified holoenzyme in a more efficient manner than previously achieved. Two methods for assembling the holoenzyme are described. In one, exogenous heme is added at lysis, while in the other heme biosynthesis is stimulated in E. coli. A primary reason for developing this method has been the need to minimize loss of precious, isotope-labeled enzyme and, so, this method has also been used to produce both the perdeuterated and the (15)N-labeled enzyme, as well as several variants.  相似文献   

16.
Studies on the production of fungal peroxidases in Aspergillus niger   总被引:3,自引:0,他引:3  
To get insight into the limiting factors existing for the efficient production of fungal peroxidase in filamentous fungi, the expression of the Phanerochaete chrysosporium lignin peroxidase H8 (lipA) and manganese peroxidase (MnP) H4 (mnp1) genes in Aspergillus niger has been studied. For this purpose, a protease-deficient A. niger strain and different expression cassettes have been used. Northern blotting experiments indicated high steady-state mRNA levels for the recombinant genes. Manganese peroxidase was secreted into the culture medium as an active protein. The recombinant protein showed specific activity and a spectrum profile similar to those of the native enzyme, was correctly processed at its N terminus, and had a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Recombinant MnP production could be increased up to 100 mg/liter upon hemoglobin supplementation of the culture medium. Lignin peroxidase was also secreted into the extracellular medium, although the protein was not active, presumably due to incorrect processing of the secreted enzyme. Expression of the lipA and mnp1 genes fused to the A. niger glucoamylase gene did not result in improved production yields.  相似文献   

17.
For constructing a bifunctional antioxidative enzyme with both superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, a supramolecular artificial enzyme was successfully constructed by the self-assembly of the Mn(III)meso-tetra[1-(1-adamantyl methyl ketone)-4-pyridyl] porphyrin (MnTPyP-M-Ad) and cyclodextrin-based telluronic acid (2-CD-TeO3H) through host-guest interaction in aqueous solution. The self-assembly of the adamantyl moieties of Mn(III) porphyrin and the β-CD cavities of 2-CD-TeO3H was demonstrated by the NMR spectra. In this supramolecular enzyme model, the Mn(III) porphyrin center acted as an efficient active site of SOD and tellurol moiety endowed GPx activity. The SOD-like activity (IC50) of the new catalyst was found to be 0.116 μM and equals to 2.56% of the activity of the native SOD. Besides this, supramolecular enzyme model also showed a high GPx activity, and a remarkable rate enhancement of 27-fold compared to the well-known GPx mimic ebselen was observed. More importantly, the supramolecular artificial enzyme showed good thermal stability.  相似文献   

18.
Spectral scans in both the visible (650-450 nm) and the Soret (450-380 nm) regions were recorded for the native enzyme, Compound II, and Compound III of lactoperoxidase and thyroid peroxidase. Compound II for each enzyme (1.7 microM) was prepared by adding a slight excess of H2O2 (6 microM), whereas Compound III was prepared by adding a large excess of H2O2 (200 microM). After these compounds had been formed it was observed that they were slowly reconverted to the native enzyme in the absence of exogenous donors. The pathway of Compound III back to the native enzyme involved Compound II as an intermediate. Reconversion of Compound III to native enzyme was accompanied by the disappearance of H2O2 and generation of O2, with approximately 1 mol of O2 formed for each 2 mol of H2O2 that disappeared. A scheme is proposed to explain these observations, involving intermediate formation of the ferrous enzyme. According to the scheme, Compound III participates in a reaction cycle that effectively converts H2O2 to O2. Iodide markedly affected the interconversions between native enzyme, Compound II, and Compound III for lactoperoxidase and thyroid peroxidase. A low concentration of iodide (4 microM) completely blocked the formation of Compound II when lactoperoxidase or thyroid peroxidase was treated with 6 microM H2O2. When the enzymes were treated with 200 microM H2O2, the same low concentration of iodide completely blocked the formation of Compound III and largely prevented the enzyme degradation that otherwise occurred in the absence of iodide. These effects of iodide are readily explained by (i) the two-electron oxidation of iodide to hypoiodite by Compound I, which bypasses Compound II as an intermediate, and (ii) the rapid oxidation of H2O2 to O2 by the hypoiodite formed in the reaction between Compound I and iodide.  相似文献   

19.
20.
Coding DNA of the tobacco anionic peroxidase gene was cloned in pET40b vector. The problem of 11 arginine codons, rare in procaryotes, in the tobacco peroxidase gene was solved using E. coli BL21(DE3) Codon Plus strain. The expression level of the tobacco apo-peroxidase in the above strain was approximately 40% of the total E. coli protein. The tobacco peroxidase refolding was optimized based on the earlier developed protocol for horseradish peroxidase. The reactivation yield of recombinant tobacco enzyme was about 7% with the specific activity of 1100-1200 U/mg towards 2,2;-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was shown that the reaction of ABTS oxidation by hydrogen peroxide catalyzed by recombinant tobacco peroxidase proceeds via the ping-pong kinetic mechanism as for the native enzyme. In the presence of calcium ions, the recombinant peroxidase exhibits a 2.5-fold decrease in the second order rate constant for hydrogen peroxide and 1.5-fold decrease for ABTS. Thus, calcium ions have an inhibitory effect on the recombinant enzyme like that observed earlier for the native tobacco peroxidase. The data demonstrate that the oligosaccharide part of the enzyme has no effect on the kinetic properties and calcium inhibition of tobacco peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号