首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient PCR amplifications require precisely designed and optimized oligonucleotide primers, components, and cycling conditions. Despite recent software development and reaction improvement, primer design can still be enhanced. The aims of this research are to understand (1) the effect on PCR efficiency and DNA yields of primer thermodynamics parameters, and (2) the incorporation of 5′ A/T-rich overhanging sequences (flaps) during primer design. Two primer sets, one optimal (ΔG = 0) and one sub-optimal (ΔG = 0.9), were designed using web interface software Primer3, BLASTn, and mFold to target a movement protein gene of Tobacco mosaic virus. The optimal primer set amplifies a product of 195 bp and supports higher PCR sensitivity and yields compared to the sub-optimal primer set, which amplifies a product of 192 bp. Greater fluorescence was obtained using optimal primers compared to that with sub-optimal primers. Primers designed with sub-optimal thermodynamics can be substantially improved by adding 5′ flaps. Results indicate that even if the performance of some primers can be improved substantially by 5′ flap addition, not all primers will be similarly improved. Optimal 5′ flap sequences are dependent on the primer sequences, and alter the primer’s T m value. The manipulation of this feature may enhance primer’s efficiency to increase the PCR sensitivity and DNA yield.  相似文献   

2.
The "megaprimer" method of site-directed mutagenesis   总被引:121,自引:0,他引:121  
We describe a simple and efficient method of mutagenesis which we term the "megaprimer" method. The method utilizes three oligonucleotide primers to perform two rounds of polymerase chain reaction. In the method, the product of the first polymerase chain reaction is used as one of the polymerase chain reaction primers (a "megaprimer") for the second polymerase chain reaction. When a phage promoter and a translational initiation signal are attached to the appropriate oligonucleotide primer, the mutant protein can be generated without any in vivo manipulations. To illustrate the method, two mutations in the catalytic domain of the human factor IX gene have been generated. The substitution of megaprimers for oligonucleotide primers may have utility in other polymerase chain reaction-based methods.  相似文献   

3.
郭银平  黄英 《微生物学报》2007,47(6):1081-1083
看家基因的扩增与测序是进行多基因系统进化分析首先需要解决的问题。针对链霉菌这一群高(G C)mol%革兰氏阳性细菌,选定4个看家基因:atpD、recA、rpoB和trpB,利用NCBI数据库中已有的2个链霉菌和3个分枝杆菌的全基因组序列,以及另两个链霉菌的recA基因序列,通过软件分析设计了各基因的扩增和测序引物,并优化了扩增反应条件。从所试验的55株链霉菌中,均特异地扩增出了上述4个基因的片段,并成功进行了序列测定,验证了所设计引物的实用性。所归纳的引物设计方法可用于高(G C)mol%革兰氏阳性细菌的其它看家基因,以促进多基因系统进化研究的开展。  相似文献   

4.
王玉国 《广西植物》2010,30(6):753-759
引物选择、设计与应用策略是植物分子系统发育与进化研究的关键环节。本文综述了基因选择的原则、引物设计的技巧以及如何有效地利用所涉及的片段获取相应的PCR片段的方法。  相似文献   

5.
Eight pairs of published PCR primers were evaluated for the specific detection of Cryptosporidium parvum and Giardia lamblia in water. Detection sensitivities ranged from 1 to 10 oocysts or cysts for purified preparations and 5 to 50 oocysts or cysts for seeded environmental water samples. Maximum sensitivity was achieved with two successive rounds of amplification and hybridization, with oligonucleotide probes detected by chemiluminescence. Primer annealing temperatures and MgCl2 concentrations were optimized, and the specificities of the primer pairs were determined with closely related species. Some of the primers were species specific, while others were only genus specific. Multiplex PCR for the simultaneous detection of Cryptosporidium and Giardia was demonstrated with primers amplifying 256- and 163-bp products from the 18S rRNA gene of Cryptosporidium and the heat shock protein gene of Giardia, respectively. The results demonstrate the potential utility of PCR for the detection of pathogenic protozoa in water but emphasize the necessity of continued development.  相似文献   

6.
EasyExonPrimer     
EasyExonPrimer is a web-based software that automates the design of PCR primers to amplify exon sequences from genomic DNA. EasyExonPrimer is written in Perl and uses Primer3 to design PCR primers based on the genome builds and annotation databases available at the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). It masks repeats and known single nucleotide polymorphism (SNP) sites in the genome and designs standardised primers using optimised conditions. Users can input genes by RefSeq mRNA ID, gene name or keyword. The primer design is optimised for large-scale resequencing of exons. For exons larger than 1 kb, the user has the option of breaking the exon sequence down into overlapping smaller fragments. All primer pairs are then verified using the In-Silico PCR software to test for uniqueness in the genome. We have designed >1000 pairs of primers for 90 genes; 95% of the primer pairs successfully amplified exon sequences under standard PCR conditions without requiring further optimisation. AVAILABILITY: EasyExonPrimer is available from http://129.43.22.27/~primer/. The source code is also available upon request. CONTACT: Xiaolin Wu (forestwu@mail.nih.gov).  相似文献   

7.
Enhancements and modifications of primer design program Primer3   总被引:4,自引:0,他引:4  
The determination of annealing temperature is a critical step in PCR design. This parameter is typically derived from the melting temperature of the PCR primers, so for successful PCR work it is important to determine the melting temperature of primer accurately. We introduced several enhancements in the widely used primer design program Primer3. The improvements include a formula for calculating melting temperature and a salt correction formula. Also, the new version can take into account the effects of divalent cations, which are included in most PCR buffers. Another modification enables using lowercase masked template sequences for primer design. Availability: Features described in this article have been implemented into the development code of Primer3 and will be available in future versions (version 1.1 and newer) of Primer3. Also, a modified version is compiled under the name of mPrimer3 which is distributed independently. The web-based version of mPrimer3 is available at http://bioinfo.ebc.ee/mprimer3/ and the binary code is freely downloadable from the URL http://bioinfo.ebc.ee/download/.  相似文献   

8.
SNPbox: a modular software package for large-scale primer design   总被引:1,自引:0,他引:1  
SUMMARY: We developed a modular software package SNPbox that automates and standardizes the generation of PCR primers and is used in the strategy for constructing single nucleotide polymorphisms (SNPs) maps. In this strategy, the focus of primer design can be either on the validation of annotated public SNPs or on the SNP discovery in exon regions or extended genomic regions, both by resequencing. SNPbox relies on Primer3 for the primer design and combines this program with other publicly available software tools such as BLAST, Spidey and RepeatMasker, and newly developed algorithms. Primer conditions were chosen such that PCR amplifications are uniform for each PCR amplicon facilitating the use of high-throughput genetic platforms. SNPbox can also be used for the design of primer sets for mutation analysis, STR marker genotyping and microarray oligo design. Of the 2500 primer sets designed by SNPbox, 95% successfully amplified genomic DNA under uniform PCR conditions. AVAILABILITY: The software is available from the authors upon request. SUPPLEMENTARY INFORMATION: SNPbox_supplement.  相似文献   

9.
Polymerase chain reaction (PCR) is widely applied in clinical and environmental microbiology. Primer design is key to the development of successful assays and is often performed manually by using multiple nucleic acid alignments. Few public software tools exist that allow comprehensive design of degenerate primers for large groups of related targets based on complex multiple sequence alignments. Here we present a method for designing such primers based on tree building followed by application of a set covering algorithm, and demonstrate its utility in compiling Multiplex PCR primer panels for detection and differentiation of viral pathogens.  相似文献   

10.
SOP3 is a web-based software tool for designing oligonucleotide primers for use in the analysis of single nucleotide polymorphisms (SNPs). Accessible via the Internet, the application is optimized for developing the PCR and sequencing primers that are necessary for Pyrosequencing. The application accepts as input gene name, SNP reference sequence number, or chromosomal nucleotide location. Output can be parsed by gene name, SNP reference number, heterozygosity value, location, chromosome, or function. The location of an individual polymorphism, such as an intron, exon, or 5' or 3' untranslated region is indicated, as are whether nucleotide changes in an exon are associated with a change in an amino acid sequence. SOP3 presents for each entry a set of forward and biotinylated reverse PCR primers as well as a sequencing primer for use during the analysis of SNPs by Pyrosequencing. Theoretical pyrograms for each allele are calculated and presented graphically. The method has been tested in the development of Pyrosequencing assays for determining SNPs and for deletion/insertion polymorphisms in the human genome. Of the SOP3-designed primer sets that were tested, a large majority of the primer sets have successfully produced PCR products and Pyrosequencing data.  相似文献   

11.
The Northeast Structural Genomics Consortium (NESG) is one of nine NIH-funded pilot projects created to develop technologies needed for structural studies of proteins on a genome-wide scale. One of the most challenging aspects of this emerging field is the production of protein samples amenable to structural determination. To do this efficiently, all steps in the protein production pipeline must be automated. Here we describe the Primer program (linked from http://www-nmr.cabm.rutgers.edu/bioinformatics, www-nmr.cabm.rutgers.edu/bioinformatics, a web-based primer design program freely available to the scientific community, which was created to automate this time consuming and laborious task. This program has the ability to simultaneously calculate plasmid specific primer sets for multiple open reading frame (ORF) targets, including 96-well and greater formats. Primer includes a library of commonly used plasmid systems and possesses the ability to upload user-defined plasmid systems. In addition to calculating gene-specific annealing regions for each target, the program also adds appropriate restriction endonuclease recognition or viral recombination sites while preserving a reading frame with plasmid based fusions. Primer has several useful features such as sorting calculated primer sets by target size, facilitating interpretation of PCR amplifications by agarose gel electrophoresis, as well as supplying the molecular biologist with many important characteristics of each target such as the expected size of the PCR amplified DNA fragment and internal restriction sites. The NESG has cloned over 1500 genes using oligonucleotide primers designed by Primer.  相似文献   

12.
Monitoring genetically modified (GM) bacterial inoculants after field release using conventional culture methods can be difficult. An alternative is the detection of marker genes in DNA extracted directly from soil, using specific oligonucleotide primers with the polymerase chain reaction (PCR). The PCR was used to monitor survival of two GM Rhizobium leguminosarum bv. viciae inoculants after release in the field at Rothamsted. One strain, RSM2004, is marked by insertion of transposon Tn 5 ; the second strain, CT0370, released at the same site, is modified by chromosomal integration of a single copy of the gene from E. coli conferring GUS activity. Both GM strains provide a realistic case study for the development of PCR-based detection techniques. Specific primers were developed to amplify regions of the Tn 5 and GUS genetic markers using PCR and conditions optimized for each primer set to routinely detect a signal from 10 fg of purified template DNA, the equivalent of one cell per reaction. Procedures to improve the sensitivity of detection are described, to detect fewer than 50 cells g−1 soil in soil-extracted DNA.  相似文献   

13.
Primer3--new capabilities and interfaces   总被引:3,自引:0,他引:3  
Polymerase chain reaction (PCR) is a basic molecular biology technique with a multiplicity of uses, including deoxyribonucleic acid cloning and sequencing, functional analysis of genes, diagnosis of diseases, genotyping and discovery of genetic variants. Reliable primer design is crucial for successful PCR, and for over a decade, the open-source Primer3 software has been widely used for primer design, often in high-throughput genomics applications. It has also been incorporated into numerous publicly available software packages and web services. During this period, we have greatly expanded Primer3's functionality. In this article, we describe Primer3's current capabilities, emphasizing recent improvements. The most notable enhancements incorporate more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers. Additional enhancements include more precise control of primer placement-a change motivated partly by opportunities to use whole-genome sequences to improve primer specificity. We also added features to increase ease of use, including the ability to save and re-use parameter settings and the ability to require that individual primers not be used in more than one primer pair. We have made the core code more modular and provided cleaner programming interfaces to further ease integration with other software. These improvements position Primer3 for continued use with genome-scale data in the decade ahead.  相似文献   

14.
Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5′-segment that initiates stable priming, and a short 3′-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR.  相似文献   

15.
16.
Degenerate oligonucleotide primers were made to peptide sequences from hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea. The primers were used singly in PCR reactions to amplify portions of the gene for HAO from genomic DNA. Southern hybridizations using fragments amplified with each primer showed that they labeled the same genomic DNA fragments. The PCR-amplified fragments were successfully used to screen a gene library for clones containing the HAO gene. The method of isolating genes by PCR with single primers has general utility.  相似文献   

17.
PCR detection of viral pathogens is extremely useful, but suffers from the challenge of detecting the many variant strains of a given virus that arise over time. Here, we report the computational derivation and initial experimental testing of a combination of 10 PCR primers to be used in a single high-sensitivity mixed PCR reaction for the detection of dengue virus. Primer sequences were computed such that their probability of mispriming with human DNA is extremely low. A 'cocktail' of 10 primers was shown experimentally to be able to detect cDNA clones representing the four serotypes and dengue virus RNA spiked into total human whole blood RNA. Computationally, the primers are predicted to detect 95% of the 1688 dengue strains analyzed (with perfect primer match). Allowing up to one mismatch and one insertion per primer, the primer set detects 99% of strains. Primer sets from three previous studies have been compared with the present set of primers and their relative sensitivity for dengue virus is discussed. These results provide the formulation and demonstration of a mixed primer PCR reagent that may enable the detection of nearly any dengue strain irrespective of serotype, in a single PCR reaction, and illustrate an approach to the broad problem of detecting highly mutable RNA viruses.  相似文献   

18.
19.
SeqState     
Choosing and designing primers based on available DNA sequence data and statistical contrasting of domains or structural features is a common routine among molecular biologists. Currently available, free software tools were found to lack desirable features related to these tasks. This was the motivation for developing a new program, SeqState. SeqState locates regions that remain to be sequenced in phylogenetic DNA datasets, evaluates user-provided primers and selects primers best suited to fill gaps in the sequences. If the primers provided by the user are unsuitable, new primers are designed. Primers can be loaded from a primer database, be supplied as part of the alignment or be entered manually. The position of internal primers is automatically localised in the loaded data file. Primers can be edited, and changes and new primers can be saved to the database. Primer sheets allow the user to view internal dimers, complements to a second primer, mismatches to all loaded sequences, and other primer characteristics. Calculation of various sequence statistics can be requested for the whole dataset or parts thereof (character sets), with standard errors estimated by bootstrapping. Insertion-deletion events can be evaluated statistically and encoded for subsequent phylogenetic analysis according to several published coding principles.  相似文献   

20.
We isolated 13 variable dinucleotide microsatellites from red‐backed salamanders (Plethodon cinereus). After generating fragments using degenerate oligonucleotide primer‐polymerase chain reaction (DOP‐PCR), AC repeats were captured using biotinylated probes and streptavidin‐coated magnetic particles. Captured fragments were cloned into plasmids, screened for microsatellites with a simple PCR reaction, and select plasmids then sequenced. PCR primers were designed and optimized for robust amplification, and nine primers have been further optimized for multiplex reactions with fluorescent primers. These nine loci are variable with an average of 6.11 alleles per locus and an average heterozygosity of 0.61.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号