共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. 总被引:3,自引:0,他引:3
下载免费PDF全文

The Smoluchowski equation for the bimolecular collision rate of dissolved oxygen molecules with spin labels yielded values for the diffusion constant of oxygen in water that are in agreement with the Stokes-Einstein equation (D infinity T/eta, where eta is the macroscopic viscosity) and with published values obtained by conventional methods. Heisenberg exchange at an interaction distance of 4.5 A occurs with a probability close to one for each encounter. In mixed hydrocarbons (olive oil, paraffin oils) and sec-butyl benzene, D infinity (T/eta)rho, where rho lies between 0.5 and 1. Oxygen diffuses in the hydrocarbons between 10 and 100 times more rapidly than predicted from the macroscopic viscosity. Similar results would be expected for diffusion of oxygen in model and biological membranes. Parallel measurements of rotational diffusion of the spin labels show little correlation with measurements of translational diffusion of oxygen. Dipolar interactions between spin labels and oxygen appear negligible except in the limit of highest viscosities. 相似文献
2.
Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane. 相似文献
3.
Model membranes consisting of dimyristoyl phosphatidylcholine and a hydrophobic protein from bovine myelin, lipophilin, were studied using the cholesterol-resembling cholestane ESR spin label. Orientation of the membranes made it possible to deconvolute the spectra into two fractions, one of oriented spin labels reflecting phospholipid bilayer of high order, and one of isotropically tumbling spin labels ascribed to the lipid fraction surrounding the protein molecule (boundary lipid). This isotropic tumbling is different from the behavior of phospholipid molecules near the protein, which retain some degree of order, and indicates that the boundary lipid fraction in our model system forms a rather fluid environment for the protein. A nonlinear relation was found between protein concentration and amount of boundary spin labels. Addition of cholesterol decreases the amount of boundary spin labels. Both findings form evidence for a preferential binding of cholesterol by the membrane protein. 相似文献
4.
Dynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance
下载免费PDF全文

The hydrated ternary lamellar lipid mixture of dipalmitoyl-PC/dilauroyl-PC/cholesterol (DPPC/DLPC/Chol) has been studied by electron spin resonance (ESR) to reveal the dynamic structure on a molecular level of the different phases that exist and coexist over virtually the full range of composition. The spectra for more than 100 different compositions at room temperature were analyzed by nonlinear least-squares fitting to provide the rotational diffusion rates and order parameters of the end-chain labeled phospholipid 16-PC. The ESR spectra exhibit substantial variation as a function of composition, even though the respective phases generally differ rather modestly from each other. The Lalpha and Lbeta phases are clearly distinguished, with the former exhibiting substantially lower ordering and greater motional rates, whereas the well-defined Lo phase exhibits the greatest ordering and relatively fast motional rates. Typically, smaller variations occur within a given phase. The ESR spectral analysis also yields phase boundaries and coexistence regions which are found to be consistent with previous results from fluorescence methods, although new features are found. Phase coexistence regions were in some cases confirmed by observing the existence of isosbestic points in the absorption mode ESR spectra from the phases. The dynamic structural properties of the DPPC-rich Lbeta and DLPC-rich Lalpha phases, within their two-phase coexistence region do not change with composition along a tie-line, but the ratio of the two phases follows the lever rule in accordance with thermodynamic principles. The analysis shows that 16-PC spin-label partitions nearly equally between the Lalpha and Lbeta phases, making it a useful probe for studying such coexisting phases. Extensive study of two-phase coexistence regions requires the determination of tie-lines, which were approximated in this study. However, a method is suggested to accurately determine the tie-lines by ESR. 相似文献
5.
A spin-label electron spin resonance study of the binding of mitochondrial creatine kinase to cardiolipin 总被引:1,自引:0,他引:1
The binding of the mitochondrial creatine kinase to aqueous dispersions of beef heart cardiolipin has been studied via the perturbation of the mobility of spin-labelled cardiolipin, using electron spin resonance (ESR) spectroscopy. In the presence of creatine kinase (1:1 protein/lipid ratio, by mass), the ESR spectra of cardiolipin labelled in a single acyl chain [n-(4,4-dimethyl-oxazolidinyl-N- oxy)stearoylcardiolipin] indicate a restriction of motion both at the C-5 and C-14 positions (n = 5, 14) of the lipid chains. The restriction in mobility was reversed by addition of phosphate or adriamycin, which are thought to inhibit the binding of creatine kinase to the mitochondrial membrane or to displace it from its binding site on the membrane. The effect of the protein on the chain mobility is consistent with surface binding of the protein; no positive evidence was obtained for penetration of the protein into the hydrophobic region of the membrane. 相似文献
6.
In vivo spin-label murine pharmacodynamics using low-frequency electron paramagnetic resonance imaging. 总被引:2,自引:0,他引:2
下载免费PDF全文

H J Halpern M Peric C Yu E D Barth G V Chandramouli M W Makinen G M Rosen 《Biophysical journal》1996,71(1):403-409
A novel, very-low-frequency electron paramagnetic resonance (EPR) technique is used to image the distribution of several nitroxides with distinct pharmacologic compartment affinities in the abdomens of living mice. Image acquisition is sufficiently rapid to allow a time sequence of the distribution for each compound. The spectra and concentrations of these nitroxides are imaged with the use of spectral-spatial imaging to distinguish a single spatial dimension. Liver and bladder of the mouse anatomy are distinguished by this technique. After an intraperitoneal injection of the spin-label probes, a shift in the distribution of the compounds from the upper abdomen (primarily liver) to the lower abdomen (primarily bladder) is observed. The time dependence of the shift in regional distribution depends on the structural properties of the side chain attached to the spin label. These results indicate that this application of in vivo electron paramagnetic resonance imaging will provide a new method of magnetic resonance imaging for determination of pharmacodynamics in the body of an intact animal. 相似文献
7.
Neisseria gonorrhoeae membrane microenvironment studied by spin-label electron spin resonance: comparison of colony types. 总被引:1,自引:0,他引:1
下载免费PDF全文

W J Newhall F W Kleinhans R S Rosenthal W D Sawyer R A Haak 《Journal of bacteriology》1979,139(1):98-106
Spin-label electron spin resonance was used to characterize the microenvironment around spin probes which localize (i) in membranes, (ii) at the membrane surface, or (iii) in the cytoplasm of living Neisseria gonorrhoeae. Four colony types (T1, T2, T3, and T4) of gonococci were compared on the basis of the electron spin resonance parameters 2T parallel to, S (order parameter), and tau c (microviscosity). The concentration of spin label used had little or no effect on viability. T1 and T2 gonococci were found to have a more restricted environment for molecular motion of a membrane surface spin label than did T3 and T4. The membrane fluidity, as measured by a membrane lipid spin label, of T4 (S = 0.571) was significantly greater than that of T1 or T3 (S = 0.580). This difference was detected at 37 degrees C, at 25 degrees C, in agar-grown bacteria, and in exponential-phase cells. Studies using spin labels which probe different levels of the membrane indicated the presence of a membrane flexibility gradient. Cytoplasmic spin-label studies indicated that the cytoplasm of all gonococcal colony types was three to five times more viscous than water. 相似文献
8.
9.
Lipid-gramicidin interactions using two-dimensional Fourier-transform electron spin resonance. 总被引:2,自引:0,他引:2
下载免费PDF全文

The application of two-dimensional Fourier-transform electron-spin-resonance (2D-FT-ESR) to the study of lipid/gramicidin A (GA) interactions is reported. It is shown that 2D-FT-ESR spectra provide substantially enhanced spectral resolution to changes in the dynamics and ordering of the bulk lipids (as compared with cw-ESR spectra), that result from addition of GA to membrane vesicles of dipalmitoylphosphatidylcholine (DPPC) in excess water containing 16-PC as the lipid spin label. The agreement between the theory of Lee, Budil, and Freed and experimental results is very good in the liquid crystalline phase. Both the rotational and translational diffusion rates of the bulk lipid are substantially decreased by addition of GA, whereas the ordering is only slightly increased, for a 1:5 ratio of GA to lipid. The slowing effect on the diffusive rates of adding GA in the gel phase is less pronounced. It is suggested that the spectral fits in this phase would be improved with a more detailed dynamic model. No significant evidence is found in the 2D-FT-ESR spectra for a second immobilized component upon addition of GA, which is in contrast to cw-ESR. It is shown from simulations of the observed 2D-FT-ESR spectra that the additional component seen in cw-ESR spectra, and usually attributed to "immobilized" lipid, is inconsistent with its being characterized by increased ordering, according to a model proposed by Ge and Freed, but it would be consistent with the more conventional model of a significantly reduced diffusional rate. This is because the 2D-FT-ESR spectra exhibit a selectivity, favoring components with longer homogeneous relaxation times, T2. The homogeneous linewidths of the 2D-FT-ESR autopeaks appear to broaden as a function of mixing time. This apparent broadening is very likely due to the process of cooperative order director fluctuations (ODF) of the lipids in the vesicle. This real-time observation of ODF is distinct from, but appears in reasonable agreement with, NMR results. It is found that addition of GA to give the 1:5 ratio has only a small effect on the ODF, but there is a significant temperature dependence. 相似文献
10.
Exchange rates at the lipid-protein interface of myelin proteolipid protein studied by spin-label electron spin resonance 总被引:1,自引:0,他引:1
The electron spin resonance (ESR) spectra from spin-labeled phospholipids in recombinants of myelin proteolipid apoprotein with dimyristoylphosphatidylcholine have been simulated with the exchanged-coupled Bloch equations to obtain values for both the fraction of motionally restricted lipids and the exchange rate between the fluid and motionally restricted lipid populations. The rate of exchange between the two spin-labeled lipid components is found to lie in the slow exchange regime of nitroxide ESR spectroscopy. The values obtained for the fraction of motionally restricted component in the exchanged-coupled spectra are found to be in good agreement with those obtained previously by spectral subtraction for the same system [Brophy, P. J., Horváth, L. I., & Marsh, D. (1984) Biochemistry 23, 860-865]. The rate of lipid exchange off the protein is independent of lipid/protein ratio for a given spin-labeled phospholipid, as expected, and decreases with increasing selectivity of the various phospholipids for the protein. At 30 degrees C and for ionic strength 0.1 and pH 7.4, the off-rate constants are 4.6 X 10(6) s-1 for phosphatidic acid, 1.1 X 10(7) s-1 for phosphatidylserine, 1.6 X 10(7) s-1 for phosphatidylcholine, and 2.2 X 10(7) s-1 for phosphatidylethanolamine. These values are in the inverse ratio of the relative association constants of the various lipids for the protein (Brophy et al., 1984) and are appreciably slower than the rate of lipid lateral diffusion in dimyristoylphosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
12.
Apocytochrome c binding to negatively charged lipid dispersions studied by spin-label electron spin resonance 总被引:4,自引:0,他引:4
The interaction of apocytochrome c with aqueous dispersions of phosphatidylserine from bovine spinal cord and with other negatively charged phospholipids has been studied as a function of pH and salt concentration by using spin-label electron spin resonance (ESR) spectroscopy and chemical binding assays. The ESR spectra of phospholipids spin-labeled at different positions on the sn-2 chain indicate a generalized decrease in mobility of the lipids, while the characteristic flexibility gradient toward the terminal methyl end of the chain is maintained, on binding of apocytochrome c to phosphatidylserine dispersions. This perturbation of the bulk lipid mobility or ordering is considerably greater than that observed on binding of cytochrome c. In addition, a second, more motionally restricted, lipid component is observed with lipids labeled close to the terminal methyl ends of the chains. This second component is not observed on binding of cytochrome c and can be taken as direct evidence for penetration of apocytochrome c into the lipid bilayer. It is less strongly motionally restricted than similar spectral components observed with integral membrane proteins and displays a steep flexibility gradient. The proportion of this second component increases with increasing protein-to-lipid ratio, but the stoichiometry per protein bound decreases from 4.5 lipids per 12 000-dalton protein at low protein contents to 2 lipids per protein at saturating amounts of protein. Apocytochrome c binding to phosphatidylserine dispersions decreases with increasing salt concentration from a saturation value corresponding to approximately 5 lipids per protein in the absence of salt to practically zero at 0.4 M NaCl.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Head group and chain length dependence of phospholipid self-assembly studied by spin-label electron spin resonance 总被引:3,自引:0,他引:3
The critical micelle concentrations (cmc's) of a variety of spin-labeled phospholipids, 1-acyl-2-[4-(4,4-dimethyloxazolidine-N-oxyl)valeryl]-sn-glycero-3-pho sph o derivatives, have been determined by electron spin resonance (ESR) spectroscopy. The narrow, three-line ESR spectra of the rapidly tumbling monomers are clearly distinguished from the spin-spin broadened spectra of the micellar aggregates, allowing a direct determination of the concentrations of the two species. The influence of both the hydrocarbon chain length and the polar head group on the energetics of self-assembly has been studied. For phosphatidylcholine, 1n [cmc] decreases linearly with the length of the sn-1 chain. The gradient of this linear dependence corresponds to a free energy of transfer of the monomer from the aqueous phase to the micelle of delta Gtr = -1.1RT per CH2 group. The cmc's of the 1-lauroyl derivatives of both phosphatidylcholine and phosphatidylglycerol have relatively shallow, biphasic temperature dependences with a minimum at approximately 20 degrees C. Both of these properties are characteristic of the hydrophobic effect, with the free energy of transfer being slightly less than that for the solubility of n-hydrocarbons in water, corresponding to the reduced configurational entropy of the lipid chains in the micellar state. The cmc's of the 1-lauroyl derivatives of the phospholipids in 0.15 M NaCl, for their various charge states, are as follows: phosphatidic acid(2-), 0.77 mM; phosphatidic acid(1-), 0.13 mM; phosphatidylserine(1-), 0.24 mM; phosphatidylglycerol(1-), 0.17 mM; phosphatidylcholine, 0.10 mM; phosphatidylethanolamine, 0.05 mM.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed. 相似文献
15.
Interactions of palmitoylsphingomyelin with cholesterol in multilamellar vesicles have been studied over a wide range of compositions and temperatures in excess water by using electron spin resonance (ESR) spectroscopy. Spin labels bearing the nitroxide free radical group on the 5 or 14 C-atom in either the sn-2 stearoyl chain of phosphatidylcholine (predominantly 1-palmitoyl) or the N-stearoyl chain of sphingomyelin were used to determine the mobility and ordering of the lipids in the different phases. Two-component ESR spectra of the 14-position spin labels demonstrate the coexistence first of gel (L(beta)) and liquid-ordered (L(o)) phases and then of liquid-ordered and liquid-disordered (L(alpha)) phases, with progressively increasing temperature. These phase coexistences are detected over a limited range of cholesterol contents. ESR spectra of the 5-position spin labels register an abrupt increase in ordering at the L(alpha)-L(o) transition and a biphasic response at the L(beta)-L(o) transition. Differences in outer splitting between the C14-labeled sphingomyelin and phosphatidylcholine probes are attributed to partial interdigitation of the sphingomyelin N-acyl chains across the bilayer plane in the L(o) state. In the region where the two fluid phases, L(alpha) and L(o), coexist, the rate at which lipids exchange between phases (<7 x 10(7) s(-)(1)) is much slower than translational rates in the L(alpha) phase, which facilitates resolution of two-component spectra. 相似文献
16.
The microsecond motions of spin-labeled lipids associated with the Na(+)/K(+)-transporting ATP hydrolase (Na,K-ATPase) in native and tryptically shaved membranes from Squalus acanthias have been studied by progressive saturation electron spin resonance (ESR). This includes both the segmental mobility of the lipid chains and the exchange dynamics of the lipids interacting directly with the protein. The lipids at the protein interface display a temperature-dependent chain mobility on the submicrosecond time scale. Exchange of these lipids with those in the bulk bilayer regions of the membrane takes place on the time scale of the nitroxide spin-lattice relaxation, i.e., in the microsecond regime. The off-rates for exchange directly reflect the specificity of ionized fatty acids relative to protonated fatty acids for interaction with the Na,K-ATPase. These essential features of the lipid dynamics at the intramembranous protein surface, namely, a temperature-dependent exchange on the microsecond time scale that reflects the lipid selectivity, are preserved on removing the extramembranous parts of the Na,K-ATPase by extensive trypsinization. 相似文献
17.
Lipid-protein interactions in (Na+,K+)-ATPase-rich membranes from Squalus acanthias have been studied using spin-labeled derivatives of the mono- and disialogangliosides GM1, GM2, GM3, and GD1b, in conjunction with electron spin resonance (ESR) spectroscopy. Ganglioside-protein interactions are revealed by the presence of a second component in the ESR spectra of the membranes in addition to a component that corresponds closely to the ESR spectra obtained from dispersions of the extracted membrane lipids. This second component corresponds to spin-labeled gangliosides whose chain motion is significantly restricted relative to that of the fluid lipids in the membrane or the lipid extract. A small selectively for the motionally restricted component associated with the protein is found in the order GD1b greater than GM1 approximately equal to GM2 approximately equal to GM3. Comparison with previous results from spin-labeled phospholipids in the same system [Esmann, M., Watts, A., & Marsh, D. (1985) Biochemistry 24, 1386-1393] shows that the spin-labeled monosialogangliosides GM1, GM2, and GM3 display little selectivity in the lipid-protein interaction relative to spin-labeled phosphatidylcholine. The spectral characteristics of both the fluid and motionally restricted spin-labeled components differ very significantly, however, between the gangliosides and the phospholipids. The outer hyperfine splitting of the motionally restricted component is smaller for the gangliosides than for the phospholipids, indicating a smaller degree of motional restriction on interaction of the ganglioside lipid chains with the protein.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Stoichiometry and specificity of lipid-protein interaction with myelin proteolipid protein studied by spin-label electron spin resonance 总被引:3,自引:0,他引:3
The interaction of spin-labeled lipids with the myelin proteolipid apoprotein in complexes with dimyristoylphosphatidylcholine of varying lipid/protein ratios has been studied with electron spin resonance spectroscopy. A first shell of approximately 10 lipids per 25 000-dalton protein is found to be motionally restricted by the protein interface. This stoichiometry is consistent with a hexameric arrangement of the protein in the membrane. A selectivity of the various spin-labeled lipids for the motionally restricted component at the protein interface is found in the order stearic acid greater than phosphatidic acid greater than cardiolipin approximately greater than phosphatidylserine greater than phosphatidylglycerol approximately equal to phosphatidylcholine greater than phosphatidylethanolamine greater than androstanol approximately greater than cholestane. 相似文献
19.
Interaction of phospholipids with the detergent-solubilized ADP/ATP carrier protein as studied by spin-label electron spin resonance 总被引:1,自引:0,他引:1
The interaction of spin-labeled phospholipids with the detergent-solubilized ADP/ATP carrier protein from the inner mitochondrial membrane has been investigated by electron spin resonance spectroscopy. The equilibrium binding of cardiolipin and phosphatidic acid was studied by titration of the protein with spin-labeled phospholipid analogues using a spectral subtraction protocol for the evaluation of the mobile and immobilized lipid portions. This analysis revealed the immobilization of two molecules of spin-labeled cardiolipin per protein dimer. Phosphatidic acid has a similar affinity for the protein surface as cardiolipin. The lipid-protein interaction was less pronounced with the neutral phospholipids and with phosphatidylglycerol. The importance of the electrostatic contribution to the phospholipid-protein interaction shows up with a strong dependence of the lipid binding on salt concentration. Cleavage by phospholipase A2 and spin reduction by ascorbate of the spin-labeled acidic phospholipids in contact with the protein surface suggest that these lipids are located on the outer perimeter of the protein. At reduced detergent concentration, the protein aggregated upon addition of small amounts of cardiolipin but remained solubilized when more cardiolipin was added. This result is discussed with respect to the aggregation state of the protein in the mitochondrial membrane. It is also tentatively concluded that binding of spin-labeled cardiolipin does not displace the tightly bound cardiolipin of mitochondrial origin, which was detected previously by 31P nuclear magnetic resonance spectroscopy. 相似文献
20.
Peroxidatic oxidation of catecholamines. A kinetic electron spin resonance investigation using the spin stabilization approach 总被引:1,自引:0,他引:1
Using spin stabilization, ESR measurements have been made of o-semiquinone production from the horseradish peroxidase-H2O2 oxidation of catecholamine substrates. The termination rate constant for semiquinones stabilized with Zn2+ at pH 5 is about 10(4) times smaller than for uncomplexed semiquinones at neutral pH. Stabilization allows steady state concentrations of semiquinones to be obtained. The duration of the steady state is dependent upon the concentrations of enzyme, hydrogen peroxide, and catecholamine substrate. The relative reactivity of the substrates 3,4-dihydroxyphenylalanine, norepinephrine, and dopamine at pH 5 is 1:8:40. The effects of phenol and ascorbate were studied and shown to be consistent with scavenging of phenoxyl radicals by catecholamine and semiquinone radicals by ascorbate, respectively. 相似文献