首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence analysis of the main component, "HbIII", of the hemoglobins from the hagfish (Myxine glutinosa L.) is described. The hagfish belongs to the Cyclostomata, the most primitive class of the vertebrates. The hagfish hemoglobin displays a great heterogeneity, as described earlier. It consists of several monomeric hemoglobins. The globin of HbIII was isolated and used for the sequence analysis. The tryptic peptides as well as the cyanogen bromide and the BNPS-skatol fragments were separated. The sequences of the peptides were determined automatically by the help of a sequenator. Compared with other hitherto analyzed vertebral hemoglobins, also including other Cyclostomata, the primary structure of "HbIII" differs by more than 50%. The differences are so many that one can refer the Myxine hemoglobin neither as an alpha- nor as a beta-chain (of the tetrameric hemoglobins). The hagfish hemoglobin like other Cyclostomata has an additional segment of 9 residues at the amino terminus end compared with the mammalian hemoglobins. In the F-helix there is an insertion of 3 amino acid residues and in the interhelical gap, GH, there is a deletion of 9 residues. The substitutions of the residues forming the heme complex are of special interest. The distal histidine, E7, is substituted for glutamine. The proximal histidine, F8, is invariable. The valine E11 is substituted by isoleucine and the leucine FG3 by phenylalanine. These positions are involved in the contact with the heme group. This complex has never been described before.  相似文献   

2.
Summary Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.  相似文献   

3.
The blood clamBarbatia virescens has a heterodimeric hemoglobin in erythrocytes. Interestingly, the congeneric clamsB. reeveana andB. lima contain quite different hemoglobins: tetramer and polymeric hemoglobin consisting of unusual didomain chain. The complete amino acid sequence of chain I ofB. virescens has been determined. The sequence was mainly determined from CNBr peptides and their subpeptides, and the alignment of the peptides was confirmed by sequencing of PCR-amplified cDNA forB. virescens chain I. The cDNA-derived amino acid sequence matched completely with the sequence proposed from protein sequencing.B. virescens chain I is composed of 156 amino acid residues, and the molecular mass was calculated to be 18,387 D, including a heme group. The sequence ofB. virescens chain I showed 35–42% sequence identity with those of the related clamAnadara trapezia and the congeneric clamB. reeveana. An evolutionary tree forAnadara andBarbatia chains clearly indicates that all of the chains are evolved from one ancestral globin gene, and that the divergence of chains has occurred in each clam after the speciation. The evolutionary rate for clam hemoglobins was estimated to be about four times faster than that of vertebrate hemoglobin. We suggest that blood clam hemoglobin is a physiologically less important molecule when compared with vertebrate hemoglobins, and so it evolved rapidly and resulted in a remarkable diversity in quaternary and subunit structure within a relatively short period.  相似文献   

4.
The blood hemoglobin of the sea lamprey presents a curious mixture of primitive and highly specialized properties. Like muscle hemoglobin, it has a molecular weight of about 17,000, and apparently contains a single heme. Its isoelectric point is like that of a typical invertebrate hemoglobin. Its amino acid composition is partly characteristic of invertebrate) partly of vertebrate hemoglobins (Pedersen; Roche and Fontaine). In the present experiments, the oxygen equilibrium curve of this pigment was measured at several pH's. As expected, it is a rectangular hyperbola, the first such function to be observed in a vertebrate blood hemoglobin. Other hemoglobins known to possess this type of oxygen dissociation curve—those of vertebrate muscle, the worm Nippostrongylus, and the bot-fly larva—appear to serve primarily the function of oxygen storage rather than transport. Lamprey hemoglobin on the contrary is an efficient oxygen-transporting agent. It achieves this status by having, unlike muscle hemoglobin, a relatively low oxygen affinity, and a very large Bohr effect. In these properties it rivals the most effective vertebrate blood hemoglobins.  相似文献   

5.
The primary structure of the two main hemoglobin components of the river lamprey Lampetra fluviatilis was established. Having a chain length of 149 amino acids the molecular weight of the globin is 16272. The two main components differ only by an N-formyl residue at the N-terminal proline. The sequence was compared with those of two related species. The heterogeneity of Cyclostomata hemoglobins and their possible origin was discussed.  相似文献   

6.
The amino acid sequence of hemoglobins I (pI 6.15 as oxyhemoglobin) and II (pI 5.64 as oxyhemoglobin) from the nitrogen-fixing root nodules of Parasponia rigida have been determined by protein sequencing. The sequence of hemoglobin I (pI 6.16, as oxyhemoglobin) from Parasponia andersonii was re-examined and the corrected primary structure, now in agreement with that predicted from the DNA sequence, is reported. The three Parasponia hemoglobins contain 161 amino acid residues (Mr approximately equal to 18,700 including the heme) with a single cysteine residue and five methionine residues. The N-terminal serine is blocked by an acetyl group. The primary structure of the Parasponia hemoglobins is highly conserved. Hemoglobins I from the two species of Parasponia are identical; both show microheterogeneity at position 30 (Asp/Glu substitution) and hemoglobin I from P. rigida shows microheterogeneity at position 150 (Ala/Val) while hemoglobin I from P. andersonii has only an Ala at 150. P. rigida hemoglobin II shows no microheterogeneity at these positions, having Asp and Val residues respectively, and it contains a single amino acid change of a Gln for an Arg at position 85, which accounts for the 0.5 unit difference in isoelectric point observed between hemoglobins I and II. The sequence data are consistent with allelic heterogeneity at a single locus rather than different genes.  相似文献   

7.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

8.
Some fish are warm-bodied, e.g. the bluefin tuna (Thunnus thynnus), which has a muscle temperature 12-17 degrees C higher than its environment. This endothermy is achieved by aerobic metabolism and conserved by means of a heat-exchanger system. The hemoglobins of bluefin tuna are adapted to these conditions by their endothermic oxygenation, thus contributing to the preservation of the body energy. This is a new and so far unique property of tuna hemoglobin. The primary structure of the alpha and beta chains of bluefin tuna hemoglobins is presented. The sequence was determined after enzymatic and chemical cleavages of the chains and sequencing of the peptides in gas- and liquid-phase sequencers. The alpha chains consists of 143 residues and are N-terminally acetylated. The beta chains have 146 amino acids and show two ambiguities at positions 140 and 142. The alpha chains differ from the human alpha chains in 65 amino-acid residues, the beta chains in 76. The hemoglobins of bluefin tuna, carp and man are compared and their different physiological properties are discussed in relation to the sequence data. From the primary structure of tuna hemoglobins, it is possible to propose a molecular basis for their peculiar endothermic transition from the T to the R structure.  相似文献   

9.
The crystal structure of hemoglobin has been known for several decades, yet various features of the molecule remain unexplained or controversial. Several animal hemoglobins have properties that cannot be readily explained in terms of their amino acid sequence and known atomic models of hemoglobin. Among these, fish hemoglobins are well known for their widely varying interactions with heterotropic effector molecules and pH sensitivity. Some fish hemoglobins are almost completely insensitive to pH (within physiological limits), whereas others show extremely low oxygen affinity under acid conditions, a phenomenon called the Root effect. X-ray crystal structures of Root effect hemoglobins have not, to date, provided convincing explanations of this effect. Sequence alignments have signally failed to pinpoint the residues involved, and site-directed mutagenesis has not yielded a human hemoglobin variant with this property. We have solved the crystal structure of tuna hemoglobin in the deoxy form at low and moderate pH and in the presence of carbon monoxide at high pH. A comparison of these models shows clear evidence for novel mechanisms of pH-dependent control of ligand affinity.  相似文献   

10.
The blood clamBarbatia virescens has a heterodimeric hemoglobin in erythrocytes. Interestingly, the congeneric clamsB. reeveana andB. lima contain quite different hemoglobins: tetramer and polymeric hemoglobin consisting of unusual didomain chain. The complete amino acid sequence of chain I ofB. virescens has been determined. The sequence was mainly determined from CNBr peptides and their subpeptides, and the alignment of the peptides was confirmed by sequencing of PCR-amplified cDNA forB. virescens chain I. The cDNA-derived amino acid sequence matched completely with the sequence proposed from protein sequencing.B. virescens chain I is composed of 156 amino acid residues, and the molecular mass was calculated to be 18,387 D, including a heme group. The sequence ofB. virescens chain I showed 35–42% sequence identity with those of the related clamAnadara trapezia and the congeneric clamB. reeveana. An evolutionary tree forAnadara andBarbatia chains clearly indicates that all of the chains are evolved from one ancestral globin gene, and that the divergence of chains has occurred in each clam after the speciation. The evolutionary rate for clam hemoglobins was estimated to be about four times faster than that of vertebrate hemoglobin. We suggest that blood clam hemoglobin is a physiologically less important molecule when compared with vertebrate hemoglobins, and so it evolved rapidly and resulted in a remarkable diversity in quaternary and subunit structure within a relatively short period.  相似文献   

11.
A Riggs 《Federation proceedings》1976,35(10):2115-2118
The packaging of vertebrate blood hemoglobins within cells places subtle constraints on hemoglobin evolution. Since the concentration of hemoglobin is near the solubility limit a selective advantage should exist for a noncomplementary external topology of amino acid residues. Further, any change in charge on the protein should alter ion distribution across the cell membrane and so modify ion-sensitive oxygen transport. An efficient hemoglobin must not only combine readily with oxygen at prevailing environmental oxygen pressures, but must also release it at metabolically appropriate pressures. These adaptations frequently employ different strategies to achieve the same objective in different animals. Some hemoglobins have evolved special properties unrelated to the transport of oxygen to metabolizing tissues. Thus many teleost fish have hemoglobins that discharge much of their oxygen at low pH even at high oxygen pressures. This property appears to aid in filling the swim bladder with oxygen. The hemoglobins of elasmobranchs have evoked a unique resistance to urea as a consequence of the high urea content of their blood. Sometimes the functional adaptations of hemoglobins are achieved by multiple hemoglobins in the same cells. Often, however, different red cell populations with functionally unique hemoglobins arise sequentially during ontogeny.  相似文献   

12.
The giant extracellular hemoglobin of the earthworm Pheretima sieboldi is mainly composed of two heme-containing subunits: a monomer; chain I and a disulfide-bonded trimer of chains II, III and IV. Both subunits can be separated easily by gel filtration under alkaline conditions. The amino acid sequence of chain I has been determined. It is composed of 141 residues, has two half-cystine residues forming a intrachain disulfide bridge, and has a molecular mass of 16911 Da including a heme group. Heterogeneity was found at position 37 (His or Ser). The amino acid sequence of Pheretima chain I showed 30-50% identity with those of eight heme-containing chains of Lumbricus and Tylorrhynchus hemoglobins. The sequences of nine chains of annelid giant hemoglobins were compared separately in the functionally essential central exonic region and structurally essential side exonic regions, and a phylogenetic tree was constructed. The amino acid substitution rate for the central exon was found to be about 1.5 times slower than that for the side exons.  相似文献   

13.
The hemoglobins of the Sea Lamprey (Petromyzon marinus) exist in an equilibrium between low affinity oligomers, stabilized by proton binding, and higher affinity monomers, stabilized by oxygen binding. Recent crystallographic analysis revealed that dimerization is coupled with key changes at the ligand binding site with the distal histidine sterically restricting ligand binding in the deoxy dimer but with no significant structural rearrangements on the proximal side. These structural insights led to the hypothesis that oxygen affinity of lamprey hemoglobin is distally regulated. Here we present the 2.9-A crystal structure of deoxygenated lamprey hemoglobin in an orthorhombic crystal form along with the structure of these crystals exposed to carbon monoxide. The hexameric assemblage in this crystal form is very similar to those observed in the previous deoxy structure. Whereas the hydrogen bonding network and packing contacts formed in the dimeric interface of lamprey hemoglobin are largely unaffected by ligand binding, the binding of carbon monoxide induces the distal histidine to swing to positions that would preclude the formation of a stabilizing hydrogen bond with the bound ligand. These results suggest a dual role for the distal histidine and strongly support the hypothesis that ligand affinity in lamprey hemoglobin is distally regulated.  相似文献   

14.
Lepore hemoglobins result from crossovers between normal beta and delta chain genes. Structural investigation of two newly discovered examples of Lepore hemoglobins revealed one of them to be structurally identical to hemoglobin Lepore Hollandia α2Aδ22 -x- β50, a rarely occurring Lepore variant, while the second had the structure of hemoglobin Lepore Boston α2Aδ87 -x- β116. Studies of the equilibrium and kinetic properties of the liganding reactions of these two Lepore hemoglobins, which differ only in three amino acid residues, and comparison of these with the known properties of hemoglobin A1 (α2β2) and hemoglobin A2 (α2δ2) have been carried out. A high value of n, the Hill coefficient, indicating normal heme-heme interaction, was observed in each hemoglobin along with a normal Bohr effect. However, a slight but definite increase in oxygen affinity was observed for each Lepore hemoglobin. Furthermore, kinetic studies indicated a slight but consistently increased rate of ligand combination and a somewhat decreased rate of oxygen dissociation for hemoglobins Lepore Hollandia and Lepore Boston at pH 7 and 20 °C. Apparently, the higher oxygen affinity of these Lepore hemoglobins over those of the normal hemoglobins A1 and A2 reflects changes of sequence that are common to both types of hemoglobin Lepore.  相似文献   

15.
Due to the prevailing importance of the tracheal system for insect respiration, hemoglobins had been considered rare exceptions in this arthropod subphylum. Here we report the identification, cloning and expression analysis of a true hemoglobin gene in the honeybee Apis mellifera (Hymenoptera). The deduced amino acid sequence covers 171 residues (19.5kDa) and harbors all globin-typical features, including the proximal and the distal histidines. The protein has no signal peptide for transmembrane transport and was predicted to localize in the cytoplasm. The honeybee hemoglobin gene shows an ancient structure, with introns in positions B12.2 and G7.0, while most other insect globins have divergent intron positions. In situ hybridization studies showed that hemoglobin expression in the honeybee is mainly associated with the tracheal system. We also observe hemoglobin expression in the Malpighi tubes and testis. We further demonstrated that hemoglobins occur in other insect orders (Hemiptera, Coleoptera, Lepidoptera), suggesting that such genes belong to the standard repertoire of an insect genome. Phylogenetic analyses show that globins evolved along with the accepted insect systematics, with a remarkable diversification within the Diptera. Although insect hemoglobins may be in fact involved in oxygen metabolism, it remains uncertain whether they carry out a myoglobin-like function in oxygen storage and delivery.  相似文献   

16.
The complete amino acid sequence of the single hemoglobin of the Antarctic teleost Gymnodraco acuticeps has been determined. The alpha chain contains 142 amino acid residues; an acetylated seryl residue is at the amino terminal. The beta chain contains 146 residues. A very high degree of sequence identity has been found with hemoglobins of other Antarctic fishes. Oxygen binding is not modulated by pH and allosteric effectors. The Bohr and Root effects are absent, although specific amino acid residues, considered responsible of most of these functions, are conserved in the sequence, thus posing new questions about the molecular basis of these mechanisms. The low heat of oxygenation may be interpreted as one of the mechanisms involved in the process of cold adaptation.  相似文献   

17.
Like goats and sheep, guinea pigs can produce, in response to human sickle cell hemoglobin (beta6 Glu leads to Val), an antibody population (anti-Val) that will bind sickle cell hemoglobin but not normal hemoglobin HbA. Unlike goats and sheep, guinea pigs can produce in response to human hemoglobin A1 an antibody fraction, anti-Glu, that will not react with human sickle cell hemoglobin. These anti-Glu antibodies have been isolated by affinity chromatography and their specificity confirmed by fluorescence-quenching titrations. The sequence of the first 10 amino acids of the beta-chain of guinea pig hemoglobin has been determined. This sequence differs from those of both hemoglobin HbA and sickle cell hemoglobin by two residues, those at positions 5 and 6. This explains the similarity of the immunogenicity of this site on the two human hemoglobins when administered to guinea pigs. Both goats and sheep are identical to hemoglobin A1 at the beta-6 position.  相似文献   

18.
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.  相似文献   

19.
Summary Antisera against larval and adultXenopus hemoglobins as well as adult human hemoglobin showed no cross-reaction when tested by immunodiffusion against each heterologous antigen. In this test hemoglobin of a single animal produced two precipitation lines for larvae, but only one for adult stages. Immunoelectrophoresis also revealed more complex precipitation patterns for larval than for adult hemoglobins. Hemoglobin of the isogenic hybrid cloneXenopus laevis/X. gilli also reacted with antisera against normalXenopus hemoglobin.Quantitation of hemoglobins, analyzed by radial immunodiffusion showed fewer than 1% of adult hemoglobin in red cells of larvae, but 30% at completion of metamorphosis. Two weeks later adult hemoglobin attained over 90%, and in red cells of adultXenopus an average of 1% larval hemoglobin were detected.The relatively short transition period suggests that the loss of larval hemoglobin may be due to the elimination of larval red cells, and that the increase in adult hemoglobin may be indicative of a new cell line.  相似文献   

20.
Summary Somatostatin-like immunofluorescence has been found by immunostaining in cells of the bile duct mucosa and pancreatic islet parenchyma of the hagfish, Myxine glutinosa, and the islet lobules of the lamprey, Lampetra fluviatilis.We are grateful to Dr. Alan Thorpe, Queen Mary College, London University for the gift of antiteleost insulin serum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号