首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Navadgi VM  Dutta A  Rao BJ 《Biochemistry》2003,42(51):15237-15251
Human Rad52 protein, by analogy with the genetics of yeast Rad52, is believed to mediate a pathway of homologous recombination even independent of Rad51. Current study is focused on unraveling the molecular properties of hRad52 that endow the protein such an ability. We show here that the hRad52 protein binds single-stranded DNA (ssDNA) as well as 3'- and 5'-tailed duplexes severalfold better than blunt-ended duplexes, altering the sensitivity of the bound DNA to the action of DNase I. Protein binding is sensitive to the length of the ssDNA: targets as short as a 33mer poorly bind the protein, whereas that of a 61mer and above bind the protein stably well. Such stable ssDNA-hRad52 complexes are highly competent in mediating not only the annealing of two complementary strands but also three-stranded pairing. The latter involves homologous recognition of linear duplex DNA by the ssDNA-hRad52 complex. We show that the hRad52 protein facilitates homologous recognition between ssDNA and duplex-DNA through a process that involves unwinding or transient unpairing of the interacting duplex via a novel three-stranded intermediate that does not lead to strand exchange. The results enable us to visualize a novel role for hRad52 that may model its function in a pathway requiring no hRad51.  相似文献   

2.
The single-stranded DNA-binding protein (SSB protein) is required for efficient genetic recombination in vivo. One function for SSB protein in DNA strand exchange in vitro is to remove secondary structure from single-stranded DNA (ssDNA) and thereby aid in the formation of recA protein-saturated presynaptic complexes. In the preceding paper (Lavery, P. E., and Kowalczykowski, S. C. (1992) J. Biol. Chem. 267, 9307-9314) we demonstrated that DNA strand exchange can occur in the presence of volume-occupying agents at low magnesium ion concentration, where secondary structures are reduced. Our results suggest that SSB protein is not acting during presynapsis under these conditions, yet the DNA strand exchange reaction is stimulated by the addition of SSB protein. In this study we present biochemical evidence which suggests that SSB protein stimulates DNA strand exchange by binding to the ssDNA displaced from joint molecules, thereby stabilizing them and allowing branch migration to extend the region of heteroduplex DNA. Therefore, our results indicate dual roles for SSB protein at elevated magnesium ion concentration; it functions during presynapsis, removing secondary structure from ssDNA, as indicated previously, and it also functions postsynaptically, binding to the ssDNA displaced from joint molecules.  相似文献   

3.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

4.
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski et al., 1990), calling into question the role of ATP hydrolysis in this reaction. We demonstrate here that the ATP gamma S-mediated process is restricted to homologous strand exchange reactions involving three strands. In four-strand exchanges between a gapped duplex circle and a second linear duplex, joint molecules are formed in the gap but are not extended into the four-strand region when ATP gamma S is present. This result provides evidence that one function of ATP hydrolysis in the recA system is to facilitate reciprocal DNA strand exchange involving four strands. Implications with respect to the role of four-stranded pairing intermediates and the mechanistic relationship between three- and four-strand exchange reactions are discussed.  相似文献   

5.
The recA protein of Escherichia coli promotes pairing in vitro between covalent circular duplex DNA and homologous circular duplex DNA containing a single stranded region. We have used a filter binding assay to investigate the frequency of homologous pairing between gapped and intact duplex DNA when unwinding of the free 3' and 5' ends of the gapped molecules was blocked. In order to obtain DNA without free ends, the gapped DNA was treated with trimethylpsoralen and 360 nm light so as to introduce about 6 crosslinks per DNA molecule and the double stranded regions on either side of the gaps were then digested up to the first crosslinks with exonuclease III and lambda exonuclease. This treatment did not diminish the frequency of homologous pairing, an observation which is difficult to reconcile with models for recombination requiring strand unwinding before pairing.  相似文献   

6.
To investigate the in vivo effects of macromolecular crowding we examined the effect of inert macromolecules such as polyvinyl alcohol and polyethylene glycol on the in vitro activity of recA protein. The addition of either of these volume-occupying agents enables recA protein to promote homologous pairing and exchange of DNA strands at an otherwise nonpermissive magnesium ion concentration. In the presence of these macromolecules, both the rate of recA protein association with single-stranded DNA (ssDNA) and the steady-state affinity of recA protein for ssDNA are increased. Consequently, the ability of recA protein to compete with ssDNA-binding protein (SSB protein) is enhanced, and the inhibitory effects of SSB protein on the formation of recA protein-ssDNA presynaptic complexes are eliminated. Because the ability of recA protein to bind to ssDNA-containing secondary structures is also enhanced in volume-occupied solution, joint molecule formation is not greatly reduced when SSB protein is omitted from the reaction. Thus, increased recA protein interactions with ssDNA contribute to enhanced presynaptic complex formation. In addition, polyvinyl alcohol and polyethylene glycol must also affect another property of recA protein, i.e. self-association, which is required for synapsis and DNA strand exchange. Our examination of DNA strand exchange in the presence of volume-occupying agents helps to reconcile the requirement for elevated magnesium ion concentrations in recA protein-promoted recombination reactions in vitro, with a presumably low magnesium ion concentration in vivo.  相似文献   

7.
Processes fundamental to all models of genetic recombination include the homologous pairing and subsequent exchange of DNA strands. Biochemical analysis of these events has been conducted primarily on the recA protein of Escherichia coli, although proteins which can promote such reactions have been purified from many sources, both prokaryotic and eukaryotic. The activities of these homologous pairing and DNA strand exchange proteins are either ATP-dependent, as predicted based on the recA protein paradigm, or, more unexpectedly, ATP-independent. This review examines the reactions promoted by both classes of proteins and highlights their similarities and differences. The mechanistic implications of the apparent existence of 2 classes of strand exchange protein are discussed.  相似文献   

8.
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma S-mediated reaction can go to completion when the duplex DNA substrate is only 1.3 kilobase pairs in length. The ATP gamma S-mediated reaction, however, is completely blocked by a 52-base pair heterologous insertion in either DNA substrate. This same barrier is readily bypassed when ATP replaces ATP gamma S. This indicates that at least one function of recA-mediated ATP hydrolysis is to bypass structural barriers in one or both DNA substrates during strand exchange. This suggests that ATP hydrolysis is directly coupled to the branch migration phase of strand exchange, not to promote strand exchange between homologous DNA substrates during recombination, but instead to facilitate the bypass of structural barriers likely to be encountered during recombinational DNA repair.  相似文献   

9.
K L Menge  F R Bryant 《Biochemistry》1992,31(22):5151-5157
The structurally related nucleoside triphosphates, adenosine triphosphate (ATP), purine riboside triphosphate (PTP), inosine triphosphate (ITP), and guanosine triphosphate (GTP), are all hydrolyzed by the recA protein with the same turnover number (17.5 min-1). The S0.5 values for these nucleotides increase progressively in the order ATP (45 microM), PTP (100 microM), ITP (300 microM), and GTP (750 microM). PTP, ITP, and GTP are each competitive inhibitors of recA protein-catalyzed ssDNA-dependent ATP hydrolysis, indicating that these nucleotides all compete for the same catalytic site on the recA protein. Despite these similarities, ATP and PTP function as cofactors for the recA protein-promoted three-strand exchange reaction, whereas ITP and GTP are inactive as cofactors. The strand exchange activity of the various nucleotides correlates directly with their ability to support the isomerization of the recA protein to a strand exchange-active conformational state. The mechanistic deficiency of ITP and GTP appears to arise as a consequence of the hydrolysis of these nucleotides to the corresponding nucleoside diphosphates, IDP and GDP. We speculate the nucleoside triphosphates with S0.5 values greater than 100 microM will be intrinsically unable to sustain the strand exchange-active conformational state of the recA protein during ongoing NTP hydrolysis and will therefore be inactive as cofactors for the strand exchange reaction.  相似文献   

10.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

11.
Vaze MB  Muniyappa K 《Biochemistry》1999,38(10):3175-3186
To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.  相似文献   

12.
B C Schutte  M M Cox 《Biochemistry》1987,26(18):5616-5625
As a first step in DNA strand exchange, recA protein forms a filamentous complex on single-stranded DNA (ssDNA), which contains stoichiometric (one recA monomer per four nucleotides) amounts of recA protein. recA protein monomers within this complex hydrolyze ATP with a turnover number of 25 min-1. Upon introduction of linear homologous duplex DNA to initiate strand exchange, this rate of ATP hydrolysis drops by 33%. The decrease in rate is complete in less than 2 min, and the rate of ATP hydrolysis then remains constant during and subsequent to the strand exchange reaction. This drop is completely dependent upon homology in the duplex DNA. In addition, the magnitude of the drop is linearly dependent upon the length of the homologous region in the linear duplex DNA. Linear DNA substrates in which pairing is topologically restricted to a paranemic joint also follow this relationship. Taken together, these properties imply that all of the available homology in the incoming duplex DNA is detected very early in the DNA strand exchange reaction, with the linear duplex DNA paired paranemically with the homologous ssDNA in the complex throughout its length. The results indicate that paranemic joints can extend over thousands of base pairs. We note elsewhere [Pugh, B. F., & Cox, M. M. (1987b) J. Biol. Chem. 262, 1337-1343] that this duplex acquires resistance to digestion by DNase with a much slower time course (30 min), which parallels the progress of strand exchange. Together these results imply that the duplex DNA is paired with the ssDNA but remains outside the nucleoprotein filament. Finally, the results also support the notion that ATP hydrolysis occurs throughout the recA nucleoprotein filament.  相似文献   

13.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

14.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.  相似文献   

15.
Site-specific recombination is involved in processes ranging from resolution of bacterial chromosome dimers to adeno-associated viral integration and is a versatile tool for mammalian genetics. The bacteriophage lambda-encoded site-specific recombinase integrase (Int) is one of the best studied site-specific recombinases and mediates recombination via four distinct pathways. We have characterized a mutant version of lambda Int, IntT236I; this mutant can perform the bent-L pathway only, whereas the corresponding IntT236A mutant can perform bent-L, excision and integration pathways. Experiments with both IntT236I and IntT236A show that the hydroxyl group of threonine is necessary for wild-type recombination. Substitution of the threonine by serine leads to nearly complete rescue of the mutant phenotypes. In addition, our data show that the IntT236I mutant is defective partially due to obstructive steric interactions. Comparisons of crystal structures reveal that the threonine at residue 236 may play an important role in stabilizing recombination intermediates through solvent-mediated protein-DNA interactions at the core-binding sites and that the hydroxyl group is important for effective cleavage and Holliday junction formation. Our data also indicate that Int contacts the core sites differently in intermediates assembled in excisive versus bent-L recombination.  相似文献   

16.
The incorporation of exogenous deoxyribonucleotide monophates (dNMP) was measured under conditions of ongoing DNA synthesis, providing arguments for the existence of a [DNAn X dNMP X PPi] intermediate in the nucleotide incorporation step of DNA synthesis: (formula; see text). The existence of such an intermediate is suggested by an apparent exchange of both dNMP and pyrophosphate (PPi) moieties of the deoxyribonucleotide triphosphate (dNTP) substrate with exogenous molecules. Such exchange and the incorporation of exogenous dNMP into DNA, strictly require ongoing DNA synthesis, suggesting that the energy for exchange reactions is provided by the cleavage of dNTP substrate. We propose that nucleotide selection during ongoing DNA synthesis results largely from the different relative rates of forward (beta) and backward (-alpha) reactions involving the [DNAn X dNMP X PPi] intermediate: the forward (incorporation) reaction is expected to predominate for the correct nucleotide, whereas the backward (abortive) reaction is expected to predominate for incorrect nucleotides.  相似文献   

17.
The site-specific inversion reaction controlling flagellin synthesis in Salmonella involves the function of three proteins: Hin, Fis and HU. The DNA substrate must be supercoiled and contain a recombinational enhancer sequence in addition to the two recombination sites. Using mutant substrates or modified reaction conditions, large amounts of complexes can be generated which are recognized by double-stranded breaks within both recombination sites upon quenching. The cleaved molecules contain 2-bp staggered cuts within the central dinucleotide of the recombination site. Hin is covalently associated with the 5' end while the protruding 3' end contains a free hydoxyl. We demonstrate that complexes generated in the presence of an active enhancer are intermediates that have advanced past the major rate limiting step(s) of the reaction. In the absence of a functional enhancer, Hin is also able to assemble and catalyze site-specific cleavages within the two recombination sites. However, these complexes are kinetically distinct from the complexes assembled with a functional enhancer and cannot generate inversion without an active enhancer. The results suggest that strand exchange leading to inversion is mediated by double-stranded cleavage of DNA at both recombination sites followed by the rotation of strands to position the DNA into the recombinant configuration. The role of the enhancer and DNA supercoiling in these reactions is discussed.  相似文献   

18.
Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences. In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA.  相似文献   

19.
recA protein, in the presence of ATP, polymerizes on single-stranded DNA (plus strand) to form a presynaptic nucleoprotein filament that pairs with linear duplex DNA and actively displaces the plus strand from the recipient molecule in a polarized fashion to form a new heteroduplex molecule. The interaction between recA protein and DNA during strand exchange was studied by labeling different strands and probing the intermediate with pancreatic deoxyribonuclease I (DNase I) or restriction endonuclease. The incoming single strand was resistant to DNase I in the original nucleoprotein filament and remained resistant even after extensive strand exchange had occurred. Both strands of the parental duplex molecule were sensitive to DNase I in the absence of joint molecule formation; but as strand exchange progressed following homologous pairing, increasing stretches of the parental plus strand became resistant, whereas the complementary parental minus strand remained sensitive to DNase I throughout the reaction. Except for a region of 50-100 base pairs at the end of the newly formed heteroduplex DNA where strand exchange was initiated, the rest of the heteroduplex region was resistant to cleavage by restriction endonucleases. The data suggest that recA protein promotes strand exchange by binding both the incoming and outgoing strands of the same polarity, whereas the complementary strand, which must switch pairing partners, is unhindered by direct contact with the protein.  相似文献   

20.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号