首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytogenetic analysis of a phenotypically normal young bull from Marchigiana breed revealed the presence of an abnormal karyotype. The observation of longer and smaller chromosomes than BTA1 and BTA29, respectively in all metaphases suggested the presence of a reciprocal translocation. RBG-banding confirmed this hypothesis revealing the involvement of BTA9 and BTA11. FISH analyses using cattle-specific BAC clones (474A12 and 293G09 for BTA9; 035D03 for BTA11) identified rcp(9;11)(q27;q11) in the two regions affected. Moreover analyses performed on both parents established the 'de novo' origin of the anomaly. Comparison with human homologue sequences (HSA6q24.3-->q25.3 for BTA9q27 and HSA2q11.1-->q12.1 for BTA11q11) revealed that both breakpoint regions are gene rich as up to date at least 200 genes have been localized in these regions. Thus, further analyses are required to identify the sequences disrupted by the breakpoints and to verify their consequences on rcp carrier phenotype.  相似文献   

2.
Routine cytogenetic investigations of the Chianina cattle (BTA) breed revealed the presence of longer and smaller chromosomes than the largest (BTA1) and smallest (BTA29) chromosomes in the cells of a young, normal-looking bull used for reproduction. Application of both RBA-banding and Ag-NOR techniques, as well as the use of the FISH technique and specific molecular markers of both BTA11 (IL1B, ASS and LGB) and BTA21 (SERPINA and D21S45) established that these two abnormal chromosomes were the product of a reciprocal translocation between BTA11 and BTA21. Both der(11) and der(21) were C-band positive and the chromosome regions affected were rcp(11;21)(q28;q12). The young bull had a normal body conformation, including external genitalia, normal levels of testosterone (as in the control) and non-detectable levels of both 17 beta-estradiol and progesterone (as in the control). The animal never showed libido in the presence of both males and females in oestrus. After slaughter at 18 months, histological evaluation revealed normal organized testes, seminiferous tubules and epididymis but with poor proliferative germ cells consisting mainly of spermatogonia, middle pachytene spermatocytes and early spermatids with late spermatids and spermatozoa being very rare.  相似文献   

3.
A new and unusual reciprocal translocation was detected in a heifer of the Agerolese cattle breed during a routine cytogenetic screening carried out on 13 animals (2 males and 11 females) kept at the ConSDABI Conservation Center in Benevento (Southern Italy). The 13 animals investigated had a normal karyotype except for a 1-year-old female, which carried one autosome smaller than the smallest normal bovine autosomes. This small autosome showed very little C-banding in comparison to the other autosomes, while another medium-sized autosome showed 2 distinct and prominent C-bands. RBA-banding and karyotype analysis revealed that these 2 chromosomes were the result of a reciprocal translocation between chromosomes 11 and 25. FISH analysis with BAC142G06 mapping to the proximal (subcentromeric) region of both BTA25 and der11, BAC513H08 (ELN) mapping to BTA25q22dist and der25, and BAC533C11 mapping to the proximal region of BTA11 and der11 confirmed the localization of the breakpoints on band q11 (centromere) of chromosome 11 and q14-21 of chromosome 25. Ag-NOR and sequential RBA/Ag-NOR techniques detected the presence of NORs on both BTA11 and BTA25 and both der11 and der25. To our knowledge, this is the first report of a reciprocal translocation event in cattle with the breakpoint located in the centromeric region.  相似文献   

4.
A comparative fluorescence in situ mapping of the SMN gene was performed on R-banded chromosome preparations of cattle (Bos taurus, BTA, 2n = 60), river buffalo (Bubalus bubalis, BBU, 2n = 50), sheep (Ovis aries, OAR, 2n = 54) and goat (Capra hircus, CHI, 2n = 60), as well as on those of a calf from Piedmont breed affected by arthrogryposis. SMN was located on BTA20q13.1, OAR16q13.1, CHI20q13.1 and BBU19q13. These chromosomes and chromosome bands are believed to be homeologous, confirming the high degree of chromosome homeologies among bovids. The position of SMN was refined in cattle, compared to the two previous localizations, while it is a new gene assignment in the other three bovids. A comparative fiber-FISH performed on extended chromatin of both normal cattle and calf affected by arthrogryposis revealed more extended FITC signals in the calf, compared to the normal cattle (control), suggesting a possible duplication of the SMN gene in the calf affected by arthrogryposis. .  相似文献   

5.
We have applied a targeted physical mapping approach, based on the isolation of bovine region-specific large-insert clones using homologous human sequences and chromosome microdissection, to enhance the physical gene map of the telomeric region of BTA18 and to prove its evolutionary conservation. The latter is a prerequisite to exploit the dense human gene map for future positional cloning approaches. Partial sequencing and homology search were used to characterize 20 BACs targeted to the BTA18q2.4-q2.6 region. We used fluorescence in situ hybridization (FISH) to create physical maps of 11 BACs containing 15 gene loci; these BACs served as anchor loci. Using these approaches, 12 new gene loci (CKM, STK13, PSCD2, IRF3, VASP, ACTN4, ITPKC, CYP2B6, FOSB, DMPK, MIA, SIX5) were assigned on BTA18 in the bovine cytogenetic map. A resolved physical map of BTA18q2.4-q2.6 was developed, which encompasses 28 marker loci and a comparative cytogenetic map that contains 15 genes. The mapping results demonstrate the high evolutionary conservation between the telomeric region of BTA18q and HSA19q.  相似文献   

6.
Somatic chromosome analysis of a subfertile Brown Swiss bull demonstrated a three-breakpoint translocation involving chromosomes 1, 8, and 9 in G- and R-banded karyotypes. Based on standard bovine chromosome nomenclature, the translocation was defined as t(1;8;9)(q43;q13;q26). Synaptonemal complex analysis of the chromosome aberration by electron microscopy revealed a hexavalent configuration in 52 of 53 pachytene cells. Twenty-seven cells (51%) had a completely paired hexavalent configuration showing distinctly nonhomologous pairings between normal and/or translocated chromosomes involved in the exchanges. Thirteen cells showed a hexavalent configuration with centrally unpaired chromosome segments but with completely paired terminal arms. In 13 cells (including one at zygotene) the translocation chromosomes formed an open hexavalent, and in one cell there were two completely paired trivalents. Thirty-two cells at diakinesis-MI demonstrated 28 configurations, including one large hexavalent. Testicular histology, testis size, and seminal characteristics were normal.  相似文献   

7.
Three bulls of the Montbéliarde breed that exhibited fertility rates lower than 30% following more than 400 artificial inseminations were examined. Semen quality (sperm motility and morphology) from these bulls was normal. Fertilizing ability estimated from in vitro embryo production results was studied for two of them. In vitro production rate was very low for one bull (A) and normal for the other (B). Cytogenetic analyses were carried out on the three bulls using chromosome banding techniques. These analyses revealed a reciprocal translocation (12;17)(q22;q14) in bull B. Based on family analyses, the hypothesis of a de novo origin of this rearrangement is proposed.  相似文献   

8.
Screening of a bovine yeast artificial chromosome (YAC) library revealed two clones which contain most of the class II genes of the major histocompatibility complex (MHC) known to date. The YACs were mapped by fluorescence in situ hybridization (FISH) and characterized for the class II genes they contain. We found that the classic class II genes BoLA- DQA, -DQB, -DRA, and -DRB3 are located at BTA 23q21 and the non-classic class II genes DYA, DIB, LMP2, LMP7, TAP2, BoLA-DOB, -DMA, -DMB, and -DNA are located at BTA 23q12-->q13. These two different mapping locations confirm and extend previous findings of a gross physical distance between classic and non-classic MHC class II genes in cattle.  相似文献   

9.
Four bovine BAC clones (0494F01, 0069D07, 0060B06, and 0306A12) containing MUC1, as confirmed by mapping MUC1 on a RH3000 radiation hybrid panel, were hybridised on R-banded chromosomes of cattle (BTA), river buffalo (BBU), sheep (OAR) and goat (CHI). MUC1 was FISH-mapped on BTA3q13, BBU6q13, OAR1p13 and CHI3q13 and both chromosomes and chromosome bands were homoeologous confirming the high degree of chromosome homoeologies among bovids and adding more information on the pericentromeric regions of these species' chromosomes. Indeed, MUC1 was more precisely assigned to BTA3 and assigned for the first time to BBU6, OAR1p and CHI3. Moreover, detailed and improved cytogenetic maps of BTA3, CHI3, OAR1p and BBU6 are shown and compared with HSA1.  相似文献   

10.
A whole-genome scan was conducted to map quantitative trait loci (QTL) for BSE resistance or susceptibility. Cows from four half-sib families were included and 173 microsatellite markers were used to construct a 2835-cM (Kosambi) linkage map covering 29 autosomes and the pseudoautosomal region of the sex chromosome. Interval mapping by linear regression was applied and extended to a multiple-QTL analysis approach that used identified QTL on other chromosomes as cofactors to increase mapping power. In the multiple-QTL analysis, two genome-wide significant QTL (BTA17 and X/Y(ps)) and four genome-wide suggestive QTL (BTA1, 6, 13, and 19) were revealed. The QTL identified here using linkage analysis do not overlap with regions previously identified using TDT analysis. One factor that may explain the disparity between the results is that a more extensive data set was used in the present study. Furthermore, methodological differences between TDT and linkage analyses may affect the power of these approaches.  相似文献   

11.
The cosegregation of ten coding loci has been investigated, in a panel of 37 somatic cell hybrids resulting from the fusion of a hamster cell line and river buffalo lymphocytes, by use of Southern hybridization technique. Five syntenic groups, TCRB-PGY3, ASS-ABL, FUCA1P-CRYG, MBP-YES1, and CGN1-ACTA1, previously assigned to cattle as U13, U16, U17, U28, and U29 respectively, were also found to be syntenic in buffalo. Based on the extensive syntenic conservation and banding homology between cattle and river buffalo, comparative mapping predicts the localization of these syntenic groups on river buffalo Chromosomes (Chrs) :BBU7, BBU12, BBU2q, BBU22, and BBU4q respectively as they have been previously localized on cattle Chrs BTA4, BTA11, BTA2, BTA24 & BTA28. Received: 2 April 1996 / Accepted: 4 July 1996  相似文献   

12.
The ``double-muscling' (mh) locus has been localized to an interval between the centromere and the microsatellite marker TGLA44 on bovine Chromosome (Chr) 2 (BTA2). We identified segments of conserved synteny that correspond to this region of BTA2 by assigning large genomic clones containing bovine homologs of seven genes from the long arm of human Chr 2 (HSA2q). Polymorphic markers developed from these clones integrated the physical and linkage maps of BTA2 from 2q12 to 2q44 and extended genetic coverage towards the centromere. This comparative analysis suggests the mh locus resides on HSA2q near both the protein C and collagen type III alpha-1 genes. Overall, our data reveal a complex rearrangement of gene order between BTA2q12-44 and HSA2q14-37 that underscores the need to establish boundaries of conserved synteny when applying comparative mapping information to identify genes or traits of interest. Received: 3 March 1997 / Accepted: 12 May 1997  相似文献   

13.
Interval mapping was carried out to identify quantitative trait loci (QTL) for milk production traits in five granddaughter design families of the German Holstein population. Fourteen randomly generated markers spanning the whole of BTA6 and six targeted microsatellite markers from BTA6q21-31 were included in the analysis. In one family a QTL with effects on milk fat yield and milk protein yield was mapped to the interval TGLA37-FBN13 (3 CM proximal to FBN13, lodscore 3.22) in the middle part of the chromosome. Although there are several reports about QTL with effects on milk production traits on BTA6 in the literature, a QTL with effects on milk fat and milk protein yield has not been previously described.  相似文献   

14.
Quantitative trait loci (QTL) associated with fat deposition have been identified on bovine Chromosome 27 (BTA27) in two different cattle populations. To generate more informative markers for verification and refinement of these QTL-containing intervals, we initiated construction of a BTA27 comparative map. Fourteen genes were selected for mapping based on previously identified regions of conservation between the cattle and human genomes. Markers were developed from the bovine orthologs of genes found on human Chromosomes 1 (HSA1), 4, 8, and 14. Twelve genes were mapped on the bovine linkage map by using markers associated with single nucleotide polymorphisms or microsatellites. Seven of these genes were also anchored to the physical map by assignment of fluorescence in situ hybridization probes. The remaining two genes not associated with an identifiable polymorphism were assigned only to the physical map. In all, seven genes were mapped to BTA27. Map information generated from the other seven genes not syntenic with BTA27 refined the breakpoint locations of conserved segments between species and revealed three areas of disagreement with the previous comparative map. Consequently, portions of HSA1 and 14 are not conserved on BTA27, and a previously undefined conserved segment corresponding to HSA8p22 was identified near the pericentromeric region of BTA8. These results show that BTA27 contains two conserved segments corresponding to HSA8p, which are separated by a segment corresponding to HSA4q. Comparative map alignment strongly suggests the conserved segment orthologous to HSA8p21-q11 contains QTL for fat deposition in cattle. Received: 25 February 2000 / Accepted: 30 March 2000  相似文献   

15.
Genome screening of quantitative trait loci (QTL) for a complex trait is usually costly and highly laborious, as it requires a large number of markers spanning the whole genome. Here we present a simplified approach for screening and mapping of QTL-linked markers for beef marbling using a WagyuxLimousin F(2) reference population. This simplified approach involves integration of the amplified fragment length polymorphism (AFLP) with DNA pooling and selective genotyping and comparative bioinformatics tools. AFLP analysis on two high and two low marbling DNA pools yielded ten visually different markers. Among them, four were confirmed based on individual AFLP validation. Sequencing and in silico characterization assigned two of these AFLP markers to bovine chromosomes 1 (BTA1) and 13 (BTA13), which are orthologous to human chromosomes HSA21q22.2 and HSA10p11.23 with both regions harboring QTL for obesity-related phenotypes. Both AFLP markers showed significantly large additive genetic effects (0.28+/-0.11 on BTA1 and 0.54+/-0.21 on BTA13) on beef-marbling score (BMS) (P<0.05). Overall, this approach is less time consuming, inexpensive and in particular, suitable for screening and mapping QTL-linked markers when targeting one or a few complex traits.  相似文献   

16.
Summary The frequency and distribution of chiasmata was investigated in two fertile carriers of reciprocal translocations, one with a 46,XY,t(9;10)(p22;q24) karyotype and one with a 46,X,-Y,+der(Y),t(Y;10)(q12;q24) karyotype. In both cases the chromosomes involved in the translocation showed an increase in chiasma frequency in comparison to karyotypically normal controls and in both cases this increase was localised, affecting only one interstitial segment of each translocation quadrivalent. In the t(9;10) case chiasmata appeared in substantial numbers in a novel location, the proximal two thirds of 9p, while in the t(Y;10) case chiasmata appeared in a conventional location, the medial region of 10q, but at an increased frequency. Furthermore there was evidence for inter-chromosomal effects in the t(9;10) case.  相似文献   

17.
Two half-sib families of backcross progeny were produced by mating F1 Line 1 Hereford (L1) × composite gene combination (CGC) bulls with L1 and CGC cows. Feed intake and periodic weights were measured for 218 backcross progeny. These progenies were genotyped using 232 microsatellite markers that spanned the 29 BTA. Progeny from L1 and CGC females was analysed separately using composite interval mapping to find quantitative trait loci (QTL) affecting daily dry matter intake (DMI), average daily gain (ADG), feed conversion (FCR) and residual feed intake (RFI). Results from both backcrosses were pooled to find additional QTL. In the backcross to L1, QTL were detected for RFI and DMI on BTA11, FCR on BTA16, and ADG on BTA9. In the backcross to CGC, QTL were detected for RFI on BTA10, FCR on BTA12 and 16 and ADG on BTA15 and 17. After pooling, QTL were detected for RFI on BTA 2, 6, 7, 10, 11, 13 and 16; for FCR on BTA 9, 12, 16, 17 and 21; for ADG on BTA 9, 14, 15, 17; and for DMI on BTA 2, 5, 6, 9, 10, 11, 20 and 23.  相似文献   

18.
A bovine BAC clone containing a processed laminin receptor pseudogene (LAMR1P) has been isolated and characterized. A 2,901-bp sequence was produced from the clone, of which 1,187 bp represented seven identifiable exon-like domains, but no intervening sequences. The pseudogene sequence reveals several transversions and transitions, as well as insertions and deletions. A premature stop codon motif is present at nucleotide position 115 located in the exon-2-like domain. Physical mapping of the gene was performed by FISH and RH panel mapping and assigned LAMR1P to BTA4q24-->q26 with the closest linkage to BM6458 (19 cR, LOD score of 11.6). The functional laminin receptor putatively plays an important role in the transmission of bovine spongiform encephalopathy (BSE). In this process, the receptor supposedly acts as the binding site for prion proteins to enter mammalian cells. Considering the existence of several human laminin receptor pseudogenes forming a complex family, any knowledge of even pseudogene sequences might be helpful to isolate the functional bovine laminin receptor gene.  相似文献   

19.
Three hundred and twenty-two (264 males and 58 females), randomly sampled Grey Alpine cattle individuals from Northeastern Italy, were investigated cytogenetically by both conventional chromosome staining and R-banding. Two hundred and eighty-one (87%) individuals had a normal karyotype and 41 (13%) carried chromosomal aberrations such as (a) rob(1;29) in two individuals, (b) rob(26;29) in 36 individuals, (c) XX/XY-chimerism in two individuals, and (d) an abnormally long chromosome in one individual. All these aberrations except (d) have been described before. GBG-, RBG-, CBA-banding and sequential GBG/CBA- and RBG/CBA-banding techniques revealed that the abnormally long chromosome was the result of a reciprocal translocation between chromosomes 1 (q21-->qter) and 5 (q11-->q33), as confirmed also by chromosome painting with human chromosome 3 and 12 probes. The dam of the carrier bull carried the same translocation, while the grandam showed a normal karyotype. Since the sire of the dam was not available for study, no conclusion about the origin of the chromosome translocation could be drawn. The carrier bull was eliminated because of poor fertility. The dam had three other calves, which all were chromosomally normal. On average the dam had to be served 2.5 times (breed average was 1.2) to be in calf.  相似文献   

20.
In 1964, Gustavsson and Rockborn first described the 1/29 Robertsonian translocation in cattle. Since then, several studies have demonstrated the negative effect of this particular chromosomal rearrangement on the fertility of carrier animals. During the last decade, meiotic segregation patterns have been studied on human males carrying balanced translocations using FISH on decondensed sperm nuclei. In this work, we have applied the 'Sperm-FISH' technique to determine the chromosomal content of spermatozoa from two bulls heterozygous for the 1/29 translocation and one normal bull (control). 5425 and 2702 sperm nuclei were scored, respectively, for the two heterozygous bulls, using whole chromosome painting probes of chromosomes 1 and 29. Very similar proportions of normal (or balanced) spermatozoa resulting from alternate segregation were observed (97.42% and 96.78%). For both heterozygous bulls, the proportions of nullisomic and disomic spermatozoa did not follow the theoretical 1:1 ratio. Indeed, proportions of nullisomic spermatozoa were higher than those of disomic sperma tozoa (1.40% vs 0.09% (bull 1) and 1.29% vs 0.15% (bull 2) for BTA1, and 0.65% vs 0.40% (bull 1) and 1.11% vs 0.63% (bull 2) for BTA29). The average frequencies of disomic and diploid spermatozoa in the normal bull were 0.11% and 0.05%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号