首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The nucleotide sequence of the beta globin gene cluster of the prosimian Galago crassicaudatus has been determined. A total sequence spanning 41,101 bp contains and links together previously published sequences of the five galago beta-like globin genes (5'-epsilon-gamma-psi eta-delta-beta-3'). A computer-aided search for middle interspersed repetitive sequences identified 10 LINE (L1) elements, including a 5' truncated repeat that is orthologous to the full-length L1 element found in the human epsilon-gamma intergenic region. SINE elements that were identified included one Alu type I repeat, four Alu type II repeats, and two methionine tRNA-derived Monomer (type III) elements. Alu type II and Monomer sequences are unique to the galago genome. Structural analyses of the cluster sequence reveals that it is relatively A+T rich (about 62%) and regions with high G+C content are associated primarily with globin coding regions. Comparative analyses with the beta globin cluster sequences of human, rabbit, and mouse reveal extensive sequence homologies in their genic regions, but only human, galago, and rabbit sequences share extensive intergenic sequence homologies. Divergence analyses of aligned intergenic and flanking sequences from orthologous human, galago, and rabbit sequences show a gradation in the rate of nucleotide sequence evolution along the cluster where sequences 5' of the epsilon globin gene region show the least sequence divergence and sequences just 5' of the beta globin gene region show the greatest sequence divergence.  相似文献   

2.
V Babich  N Aksenov  V Alexeenko  S L Oei  G Buchlow  N Tomilin 《Gene》1999,239(2):341-349
Short interspersed repeats of the Alu family located in promoters of some human genes contain high-affinity binding sites for thyroid hormone receptor, retinoic acid receptor and estrogen receptor. The standard binding sites for the receptors represent variants of duplicated AGGTCA motif with different spacing and orientation (direct, DR, or inverted, IR), and Alu sequences were found to have functional DR-4, DR-2 or variant IR-3/IR-17 elements. In this study we analyzed distribution and abundance of the elements in a set of human genomic sequences from GenBank and their association with Alu repeats. Our results indicate that a major fraction of potentially active DR-4, DR-2 and variant IR-3/IR-17 elements in the genes is located within Alu repeats. Alu-associated DR-2 elements are conserved in primate evolution. However, very few Alu have potential DR-3 glucocorticoid-response elements. Gel-shift experiments with the probe (AUB) corresponding to the consensus Alu sequence just upstream of the RNA polymerase III promoter B-box and containing duplicated AGGTCA motif indicate that the probe interacts in a sequence-specific manner with human nuclear proteins which bind to standard IR-0, DR-1, DR-4 or DR-5 elements. The AUB sequence was also able to promote thyroid hormone-dependent trans-activation of a reporter gene. The results support the view that Alu retroposons played an important role in evolution of regulation of the primate gene expression by nuclear hormone receptors.  相似文献   

3.
Nucleotide sequence of the gene for human prothrombin   总被引:23,自引:0,他引:23  
S J Degen  E W Davie 《Biochemistry》1987,26(19):6165-6177
A human genomic DNA library was screened for the gene coding for human prothrombin with a cDNA coding for the human protein. Eighty-one positive lambda phage were identified, and three were chosen for further characterization. These three phage hybridized with 5' and/or 3' probes prepared from the prothrombin cDNA. The complete DNA sequence of 21 kilobases of the human prothrombin gene was determined and included a 4.9-kilobase region that was previously sequenced. The gene for human prothrombin contains 14 exons separated by 13 intervening sequences. The exons range in size from 25 to 315 base pairs, while the introns range from 84 to 9447 base pairs. Ninety percent of the gene is composed of intervening sequence. All the intron splice junctions are consistent with sequences found in other eukaryotic genes, except for the presence of GC rather than GT on the 5' end of intervening sequence L. Thirty copies of Alu repetitive DNA and two copies of partial KpnI repeats were identified in clusters within several of the intervening sequences, and these repeats represent 40% of the DNA sequence of the gene. The size, distribution, and sequence homology of the introns within the gene were then compared to those of the genes for the other vitamin K dependent proteins and several other serine proteases.  相似文献   

4.
The regions around the human insulin gene have been studied by heteroduplex, hybridization and sequence analysis. These studies indicated that there is a region of heterogeneous length located approximately 700 bp before the 5' end of the gene; and that the 19 kb of cloned DNA which includes the 1430 bp insulin gene as well as 5650 bp before and 11,500 bp after the gene is single copy sequence except for 500 bp located 6000 bp from the 3' end of the gene. This 500 bp segment contains a member of the Alu family of dispersed middle repetitive sequences as well as another less highly repeated homopolymeric segment. The sequence of this region was determined. This Alu repeat is bordered by 19 bp direct repeats and also contains an 83 bp sequence which is present twice. The regions flanking the human and rat I insulin genes were compared by heteroduplex analysis to localize homologous sequences in the flanking regions which could be involved in the regulation of insulin biosynthesis. The homology between the two genes is restricted to the region encoding preproinsulin and a short region of approximately 60 bp flanking the 5' side of the genes.  相似文献   

5.
LINE1 and Alu retroelements occupy approximately 17 and 13% of the human genome, respectively. They include the evolutionarily youngest element groups Ta-L1, AluYa5, and AluYb8, many inserts of which are polymorphic in the Homo sapiens population. Despite the data on the ability of L1 and Alu elements to cause various modifications of the genome, the effects of these retroelements on gene expression have yet not been studied. Using the RT PCR method, we analyzed the pre-mRNA (heterogeneous nuclear RNA) content of allele pairs of four genes in five human cell lines, heterozygous with respect to intronic inserts of L1 and Alu elements. We showed for the first time a tissue-specific decrease in the pre-mRNA content of the gene allele bearing L1 or Alu inserts relative to the other allele of the same gene lacking the retroelement.  相似文献   

6.
LINE1 and Alu retroelements occupy approximately 17 and 13% of the human genome, respectively. They include the evolutionarily youngest element groups Ta-L1, AluYa5, and AluYb8, many inserts of which are polymorphous in the Homo sapiens population. Despite the data on the ability of L1 and Alu elements to cause various modifications of the genome, the effects of these retroelements on gene expression have yet not been studied. Using the RT PCR method, we analyzed the pre-mRNA (heterogeneous nuclear RNA) content of allele pairs of four genes in five human cell lines, heterozygous with respect to intronic inserts of L1 and Alu elements. We showed for the first time a tissue-specific decrease in the pre-mRNA content of the gene allele bearing L1 or Alu inserts relative to the other allele of the same gene lacking the retroelement.  相似文献   

7.
8.
Fabry disease, an inborn error of glycosphingolipid catabolism, results from mutations in the X-linked gene encoding the lysosomal enzyme, alpha-galactosidase A (EC 3.2.1.22). Six alpha-galactosidase A gene rearrangements that cause Fabry disease were investigated to assess the role of Alu repetitive elements and short direct and/or inverted repeats in the generation of these germinal mutations. The breakpoints of five partial gene deletions and one partial gene duplication were determined by either cloning and sequencing the mutant gene from an affected hemizygote, or by polymerase chain reaction amplifying and sequencing the genomic region containing the novel junction. Although the alpha-galactosidase A gene contains 12 Alu repetitive elements (representing approximately 30% of the 12-kilobase (kb) gene or approximately 1 Alu/1.0 kb), only one deletion resulted from an Alu-Alu recombination. The remaining five rearrangements involved illegitimate recombinational events between short direct repeats of 2 to 6 base pairs (bp) at the deletion or duplication breakpoints. Of these rearrangements, one had a 3' short direct repeat within an Alu element, while another was unusual having two deletions of 1.7 kb and 14 bp separated by a 151-bp inverted sequence. These findings suggested that slipped mispairing or intrachromosomal exchanges involving short direct repeats were responsible for the generation of most of these gene rearrangements. There were no inverted repeat sequences or alternating purine-pyrimidine regions which may have predisposed the gene to these rearrangements. Intriguingly, the tetranucleotide CCAG and the trinucleotide CAG (or their respective complements, CTGG and CTG) occurred within or adjacent to the direct repeats at the 5' breakpoints in three and four of the five alpha-galactosidase A gene rearrangements, respectively, suggesting a possible functional role in these illegitimate recombinational events. These studies indicate that short direct repeats are important in the formation of gene rearrangements, even in human genes like alpha-galactosidase A that are rich in Alu repetitive elements.  相似文献   

9.
We describe a new class of DNA length polymorphism that is due to a variation in the number of tandem repeats associated with Alu sequences (Alu sequence-related polymorphisms). The polymerase chain reaction was used to selectively amplify a (TTA)n repeat identified in the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from genomic DNA of 41 human subjects, and the size of the amplified products was determined by gel electrophoresis. Seven alleles were found that differed in size by integrals of three nucleotides. The allele frequencies ranged from 1.5% to 52%, and the overall heterozygosity index was 62%. The polymorphic TTA repeat was located adjacent to a repetitive sequence of the Alu family. A homology search of human genomic DNA sequences for the trinucleotide TTA (at least five members in length) revealed tandem repeats in six other genes. Three of the six (TTA)n repeats were located adjacent to Alu sequences, and two of the three (in the genes for beta-tubulin and interleukin-1 alpha) were found to be polymorphic in length. Tandemly repetitive sequences found in association with Alu sequences may be frequent sites of length polymorphism that can be used as genetic markers for gene mapping or linkage analysis.  相似文献   

10.
The human albumin-alpha-fetoprotein genomic domain contains 13 repetitive DNA elements randomly distributed throughout the symmetrical structures of these genes. These repeated sequences are located at different sites within the two genes. The human albumin gene contains five Alu elements within four of its 14 intervening sequences. Two of these repeats are located in intron 2, and the remaining three are located in introns 7, 8, and 11. The human alpha-fetoprotein gene contains three of these Alu elements, one in intron 4 and the remaining two in the 3'-untranslated region. In addition, the human alpha-fetoprotein gene contains a Kpn repeat and two classes of novel repeats that are absent from the human albumin gene. Six of the Alu elements within the two genes are bound by short direct repeats that harbor five base substitutions in 120 possible positions (60 bp times 2 termini). The absence of Alu repeats from analogous positions in rodents indicates that these repeats invaded the albumin-alpha-fetoprotein domain less than 85 Myr ago (the time of mammalian radiation). Furthermore, considering the conservation of terminal repeats flanking the Alu sequences of the albumin-alpha-fetoprotein domain (0.042 changes per site), we submit that the average time of Alu insertion into this gene family could have been as recently as 15-30 Myr ago.  相似文献   

11.
Endogenous retroviruses (ERVs) have accumulated in vertebrate genomes and contribute to the complexity of gene regulation. KAP1 represses ERVs during development by its recruitment to their repetitive sequences through KRAB zinc‐finger proteins (KZNFs), but little is known about the regulation of ERVs in adult tissues. We observed that KAP1 repression of HERVK14C was conserved in differentiated human cells and performed KAP1 knockout to obtain an overview of KAP1 function. Our results show that KAP1 represses ERVs (including HERV‐T and HERV‐S) and ZNF genes, both of which overlap with KAP1 binding sites and H3K9me3 in multiple cell types. Furthermore, this pathway is functionally conserved in adult human peripheral blood mononuclear cells. Cytosine methylation that acts on KAP1 regulated loci is necessary to prevent an interferon response, and KAP1‐depletion leads to activation of some interferon‐stimulated genes. Finally, loss of KAP1 leads to a decrease in H3K9me3 enrichment at ERVs and ZNF genes and an RNA‐sensing response mediated through MAVS signaling. These data indicate that the KAP1‐KZNF pathway contributes to genome stability and innate immune control in adult human cells.  相似文献   

12.
13.
Wang HG  Ma H  Li Z  Zhang B  Jing XY  Zhang Y  Lv ZJ 《遗传》2011,33(4):337-346
研究室的前期工作发现,Alu串连序列插入pEGFP-C1质粒的GFP基因下游,瞬时转染HeLa细胞抑制GFP基因表达,2F2R(来自SV40PolyA反序5′端的第2个60 bp)插入GFP和Alu串连序列之间可以解除Alu序列对GFP基因的抑制作用。文章通过删减2F2R发现,45R(2F2R 5′端的45 bp)、30R和22R可以活化基因,且二串连体活化基因作用高于单体。Secloop(2F2R近中部的22 bp)和Poly4(2F2R 3′端的30 bp)不能活化基因。30R与Poly4用9碱基连接形成30R-Poly4,其活化基因作用低于2F2R,两个22R之间连接碱基数对活化GFP基因作用没有明显的影响。22R(5′-GTGAAAAAAATGCTTTATTTGT-3′)含有不完整的回文序列,可以形成不完整的茎环结构,包括一个3碱基loop、3 bp第一茎、2碱基泡和3 bp第二茎。改变22R茎环结构的碱基突变明显影响其活化GFP基因的作用,过多互补和过少互补的茎环结构均不利于活化基因,提示适当的不完整茎环结构与活化基因有关。  相似文献   

14.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

15.
We have characterized a family of repetitive DNA elements in the beta-globin locus of the goat. These sequences are structurally analogous to the Alu families of repeats of other mammals. Repetitive elements are located both in the intervening sequences and in the intergenic regions of the goat beta-globin locus. Nucleotide sequence analysis of five repetitive elements located within the large intervening sequence of the beta-like globin genes, and four repeats located 5' to the major developmentally regulated beta-globin genes has resulted in the definition of a consensus sequence for this family of repeats.  相似文献   

16.
17.
The complete nucleotide sequence of the human apolipoprotein All gene together with 911 bases of 5' flanking sequence and 687 bases of 3' flanking sequence have been determined. The mRNA coding region is interrupted by three introns of 169, 293 and 395bp. The Intro-exon structure of the apo All gene is similar to that of the apo AI, apo CIII and apo E genes: three introns separate 4 coding sequences specifying the 5' untranslated region, pre-peptide, a short N-terminal domain and a C-terminal domain composed of a variable number of lipid-binding amphipathic helices. Intron II carries a 33bp dG-dT repetitive element adjacent to the 3' splice junction which has the potential to adopt the Z-DNA conformation. The 5' and 3' terminuses of the mRNA have been identified by primer extension and S1 nuclease mapping. A number of short direct repeats are found in the 5' flanking region and an inverted repeat occurs between the CAAT and TATA boxes. Downstream of the the gene is an Alu family repeat containing a polymorphic MspI site, the deletion of which is associated with increased circulating levels of apoAII. ApoAII gene expression was demonstrated in adult human liver and HepG2 cells but not in human small intestine. Of ten Rhesus monkey tissues examined apo All mRNA was detected only in liver.  相似文献   

18.
19.
DNA structural changes responsible for hereditary angioedema were sought in the C1-inhibitor gene, which contains unusually dense clusters of Alu repeats in various orientations. Among patients belonging to 45 unrelated families, eight partial C1-inhibitor gene deletions and a partial duplication were found. Four deletions had one of the boundaries within the gene and the other in extragenic regions--in three cases 5' of the gene and in one case 3' of the gene. The boundaries of the partial duplication and of the remaining four deletions mapped instead within a few kilobases of exon 4. The same element--Alu 1--the first of three tandem Alu repeats preceding exon 4, contained one of the breakpoints of each of these five rearrangements. Moreover, these recombination breakpoints spread over the entire length of Alu 1, in contrast with the tight clustering observed near the 5' end of Alu sequences rearranged in other human genes. Thus, two uncommon recombinational biases are observed in the Alu rearrangements of hereditary angioedema patients; one promotes the occurrence of intragenic breakpoints in a single Alu repeat, and the other allows the breaks to be distributed over the entire Alu structure rather than within the hot spot of the left Alu monomer. A region of potential Z-DNA structure, located 1.7 kb upstream of Alu 1, may contribute to both peculiarities.  相似文献   

20.
The non-transcribed spacers (NTS) of the ribosomal genes of a number of organisms have been studied and were found to contain repetitive sequences. In these studies with plasmid subclones of NTS, designated p3.4, p2.6 and p1.7, which come from both 5' and 3' flanking regions of the rat ribosomal genes, respectively, it has been determined that these sequences are found elsewhere within the genome. Southern hybridization analysis has demonstrated that the 5' and 3' NTS subclones cross-hybridize, and that the cross-hybridizing regions are synonymous with the highly repetitive regions. Sequences homologous to the rat NTS were specifically localized to both 5' and 3' flanking regions as well as to a number of the introns of cloned genes including rat serum albumin, rat alpha-fetoprotein, rat casein and human serum albumin. No hybridization was detected of the 5' NTS subclone to the human Alu sequence clone, Blur 8, or to the rodent equivalent, a clone containing Chinese hamster ovary type I and II Alu sequences. However, as reported for type II Alu sequences, the subcloned rat NTS sequences contain RNA polymerase III initiation sites and also hybridize to a number of small RNAs, but not 4.5 S or 7 S RNA. Sequence analysis of two distinct repetitive regions in p1.7 has revealed a region of alternating purine-pyrimidine nucleotides, potentially of Z DNA, and stretches of repetitive sequences. The possible roles for these repetitive sequences in recombination and in maintaining a hierarchical structure for the ribosomal genes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号