首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Encoding features of spatiotemporally varying stimuli is quite important for understanding the neural mechanisms of various sensory coding. Temporal coding can encode features of time-varying stimulus, and population coding with temporal coding is adequate for encoding spatiotemporal correlation of stimulus features into spatiotemporal activity of neurons. However, little is known about how spatiotemporal features of stimulus are encoded by spatiotemporal property of neural activity. To address this issue, we propose here a population coding with burst spikes, called here spatiotemporal burst (STB) coding. In STB coding, the temporal variation of stimuli is encoded by the precise onset timing of burst spike, and the spatiotemporal correlation of stimuli is emphasized by one specific aspect of burst firing, or spike packet followed by silent interval. To show concretely the role of STB coding, we study the electrosensory system of a weakly electric fish. Weakly electric fish must perceive the information about an object nearby by analyzing spatiotemporal modulations of electric field around it. On the basis of well-characterized circuitry, we constructed a neural network model of the electrosensory system. Here we show that STB coding encodes well the information of object distance and size by extracting the spatiotemporal correlation of the distorted electric field. The burst activity of electrosensory neurons is also affected by feedback signals through synaptic plasticity. We show that the control of burst activity caused by the synaptic plasticity leads to extracting the stimulus features depending on the stimulus context. Our results suggest that sensory systems use burst spikes as a unit of sensory coding in order to extract spatiotemporal features of stimuli from spatially distributed stimuli.  相似文献   

2.
Time is considered to be an important encoding dimension in olfaction, as neural populations generate odour-specific spatiotemporal responses to constant stimuli. However, during pheromone mediated anemotactic search insects must discriminate specific ratios of blend components from rapidly time varying input. The dynamics intrinsic to olfactory processing and those of naturalistic stimuli can therefore potentially collide, thereby confounding ratiometric information. In this paper we use a computational model of the macroglomerular complex of the insect antennal lobe to study the impact on ratiometric information of this potential collision between network and stimulus dynamics. We show that the model exhibits two different dynamical regimes depending upon the connectivity pattern between inhibitory interneurons (that we refer to as fixed point attractor and limit cycle attractor), which both generate ratio-specific trajectories in the projection neuron output population that are reminiscent of temporal patterning and periodic hyperpolarisation observed in olfactory antennal lobe neurons. We compare the performance of the two corresponding population codes for reporting ratiometric blend information to higher centres of the insect brain. Our key finding is that whilst the dynamically rich limit cycle attractor spatiotemporal code is faster and more efficient in transmitting blend information under certain conditions it is also more prone to interference between network and stimulus dynamics, thus degrading ratiometric information under naturalistic input conditions. Our results suggest that rich intrinsically generated network dynamics can provide a powerful means of encoding multidimensional stimuli with high accuracy and efficiency, but only when isolated from stimulus dynamics. This interference between temporal dynamics of the stimulus and temporal patterns of neural activity constitutes a real challenge that must be successfully solved by the nervous system when faced with naturalistic input.  相似文献   

3.
Wile D  Balaban E 《PloS one》2007,2(4):e369
Current theories of auditory pitch perception propose that cochlear place (spectral) and activity timing pattern (temporal) information are somehow combined within the brain to produce holistic pitch percepts, yet the neural mechanisms for integrating these two kinds of information remain obscure. To examine this process in more detail, stimuli made up of three pure tones whose components are individually resolved by the peripheral auditory system, but that nonetheless elicit a holistic, "missing fundamental" pitch percept, were played to human listeners. A technique was used to separate neural timing activity related to individual components of the tone complexes from timing activity related to an emergent feature of the complex (the envelope), and the region of the tonotopic map where information could originate from was simultaneously restricted by masking noise. Pitch percepts were mirrored to a very high degree by a simple combination of component-related and envelope-related neural responses with similar timing that originate within higher-frequency regions of the tonotopic map where stimulus components interact. These results suggest a coding scheme for holistic pitches whereby limited regions of the tonotopic map (spectral places) carrying envelope- and component-related activity with similar timing patterns selectively provide a key source of neural pitch information. A similar mechanism of integration between local and emergent object properties may contribute to holistic percepts in a variety of sensory systems.  相似文献   

4.
Bezzi M 《Bio Systems》2007,89(1-3):4-9
Information theory - in particular mutual information- has been widely used to investigate neural processing in various brain areas. Shannon mutual information quantifies how much information is, on average, contained in a set of neural activities about a set of stimuli. To extend a similar approach to single stimulus encoding, we need to introduce a quantity specific for a single stimulus. This quantity has been defined in literature by four different measures, but none of them satisfies the same intuitive properties (non-negativity, additivity), that characterize mutual information. We present here a detailed analysis of the different meanings and properties of these four definitions. We show that all these measures satisfy, at least, a weaker additivity condition, i.e. limited to the response set. This allows us to use them for analysing correlated coding, as we illustrate in a toy-example from hippocampal place cells.  相似文献   

5.
The findings obtained in neurophysiological and psychophysical investigations using tactile stimuli that move at constant velocity across the skin are reviewed. For certain neurons in the postcentral gyrus of the cerebral cortex (S-I) of macaque monkeys, direction of stimulus motion is a "trigger feature" i.e., moving tactile stimuli evoke vigorous discharge activity in these neurons only if the stimuli are moved in a particular direction across the receptive field. This directional selectivity is maximal when stimulus velocity is between 5 and 50 cm/sec, and falls off rapidly at lower or higher velocities. The capacity for human subjects to correctly identify the direction of stimulus motion on the skin exhibits a similar dependence on stimulus velocity. The similar effects of velocity on neural and psychophysical measures of directional sensitivity support the idea that direction of stimulus motion on the skin can only be recognized if the moving stimulus optimally activates the group of S-I neurons for which that directions of simulus motion is the trigger feature.  相似文献   

6.

Background

Conventional methods for spike train analysis are predominantly based on the rate function. Additionally, many experiments have utilized a temporal coding mechanism. Several techniques have been used for analyzing these two sources of information separately, but using both sources in a single framework remains a challenging problem. Here, an innovative technique is proposed for spike train analysis that considers both rate and temporal information.

Methodology/Principal Findings

Point process modeling approach is used to estimate the stimulus conditional distribution, based on observation of repeated trials. The extended Kalman filter is applied for estimation of the parameters in a parametric model. The marked point process strategy is used in order to extend this model from a single neuron to an entire neuronal population. Each spike train is transformed into a binary vector and then projected from the observation space onto the likelihood space. This projection generates a newly structured space that integrates temporal and rate information, thus improving performance of distribution-based classifiers. In this space, the stimulus-specific information is used as a distance metric between two stimuli. To illustrate the advantages of the proposed technique, spiking activity of inferior temporal cortex neurons in the macaque monkey are analyzed in both the observation and likelihood spaces. Based on goodness-of-fit, performance of the estimation method is demonstrated and the results are subsequently compared with the firing rate-based framework.

Conclusions/Significance

From both rate and temporal information integration and improvement in the neural discrimination of stimuli, it may be concluded that the likelihood space generates a more accurate representation of stimulus space. Further, an understanding of the neuronal mechanism devoted to visual object categorization may be addressed in this framework as well.  相似文献   

7.
It is well known that some neurons tend to fire packets of action potentials followed by periods of quiescence (bursts) while others within the same stage of sensory processing fire in a tonic manner. However, the respective computational advantages of bursting and tonic neurons for encoding time varying signals largely remain a mystery. Weakly electric fish use cutaneous electroreceptors to convey information about sensory stimuli and it has been shown that some electroreceptors exhibit bursting dynamics while others do not. In this study, we compare the neural coding capabilities of tonically firing and bursting electroreceptor model neurons using information theoretic measures. We find that both bursting and tonically firing model neurons efficiently transmit information about the stimulus. However, the decoding mechanisms that must be used for each differ greatly: a non-linear decoder would be required to extract all the available information transmitted by the bursting model neuron whereas a linear one might suffice for the tonically firing model neuron. Further investigations using stimulus reconstruction techniques reveal that, unlike the tonically firing model neuron, the bursting model neuron does not encode the detailed time course of the stimulus. A novel measure of feature detection reveals that the bursting neuron signals certain stimulus features. Finally, we show that feature extraction and stimulus estimation are mutually exclusive computations occurring in bursting and tonically firing model neurons, respectively. Our results therefore suggest that stimulus estimation and feature extraction might be parallel computations in certain sensory systems rather than being sequential as has been previously proposed.  相似文献   

8.
9.
Processing of tactile stimuli requires both localising the stimuli on the body surface and combining this information with a representation of the current posture. When tactile stimuli are applied to crossed hands, the system first assumes a prototypical (e.g. uncrossed) positioning of the limbs. Remapping to include the crossed posture occurs within about 300 ms. Since fingers have been suggested to be represented in a mainly somatotopic reference frame we were interested in how the processing of tactile stimuli applied to the fingers would be affected by an unusual posture of the fingers. We asked participants to report the direction of movement of two tactile stimuli, applied successively to the crossed or uncrossed index and middle fingers of one hand at different inter-stimulus intervals (15 to 700 ms). Participants almost consistently reported perceiving the stimulus direction as opposite to what it was in the fingers crossed condition, even with SOAs of 700 ms, suggesting that on average they did not incorporate the unusual relative finger positions. Therefore our results are in agreement with the idea that, by default, the processing of tactile stimuli assumes a prototypical positioning of body parts. However, in contrast to what is generally found with tactile perception with crossed hands, performance did not improve with SOAs as long as 700 ms. This suggests that the localization of stimuli in a somatotopic reference and the integration of this representation with postural information are two separate processes that apply differently to the hands and fingers.  相似文献   

10.
The ability of observers to detect temporal gaps in bursts of sinusoids or bursts of band-limited noise was measured to assess the temporal acuity of Pacinian (P) and non-Pacinian (NP) tactile information processing channels. The P channel was isolated by delivering high frequency sinusoids or high frequency noise through a large 1.5-cm2 contactor to the thenar eminence. The NP channels were isolated from the P channel by delivering these stimuli as well as stimuli with lower frequencies through a small 0.01-cm2 contactor to the same site. Gap detection thresholds were higher for gaps in noise than for gaps in sinusoids but did not differ among conditions designed to isolate P and NP channels. The finding that temporal acuity does not differ among channels supports the hypothesis that, after termination of a stimulus, the P and NP channels exhibit the same amount of neural persistence. Also consistent with this hypothesis are the earlier findings that the enhancement of the sensation magnitude of a stimulus by a prior stimulus (Verrillo and Gescheider, Percept Psychophys 18: 128-136, 1975) and the duration of sensation after the termination of a stimulus (Gescheider et al., J Acoust Soc Am 91: 1690-1696, 1992) are independent of stimulus frequency. One important implication of this hypothesis, if true, is that the presence of temporal summation in the P channel and its absence in the NP channels, results, not from the lack of neural persistence in the NP channels, but instead, in marked contrast to the P channel, from the lack of a mechanism for integrating persistent neural activity over time.  相似文献   

11.
We create a framework based on Fisher information for determining the most effective population coding scheme for representing a continuous-valued stimulus attribute over its entire range. Using this scheme, we derive optimal single- and multi-neuron rate codes for homogeneous populations using several statistical models frequently used to describe neural data. We show that each neuron's discharge rate should increase quadratically with the stimulus and that statistically independent neural outputs provides optimal coding. Only cooperative populations can achieve this condition in an informationally effective way.  相似文献   

12.
Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces.  相似文献   

13.
This article reviews the nature of the neural code in non-human primate cortex and assesses the potential for neurons to carry two or more signals simultaneously. Neurophysiological recordings from visual and motor systems indicate that the evidence for a role for precisely timed spikes relative to other spike times (ca. 1-10 ms resolution) is inconclusive. This indicates that the visual system does not carry a signal that identifies whether the responses were elicited when the stimulus was attended or not. Simulations show that the absence of such a signal reduces, but does not eliminate, the increased discrimination between stimuli that are attended compared with when the stimuli are unattended. The increased accuracy asymptotes with increased gain control, indicating limited benefit from increasing attention. The absence of a signal identifying the attentional state under which stimuli were viewed can produce the greatest discrimination between attended and unattended stimuli. Furthermore, the greatest reduction in discrimination errors occurs for a limited range of gain control, again indicating that attention effects are limited. By contrast to precisely timed patterns of spikes where the timing is relative to other spikes, response latency provides a fine temporal resolution signal (ca. 10 ms resolution) that carries information that is unavailable from coarse temporal response measures. Changes in response latency and changes in response magnitude can give rise to different predictions for the patterns of reaction times. The predictions are verified, and it is shown that the standard method for distinguishing executive and slave processes is only valid if the representations of interest, as evidenced by the neural code, are known. Overall, the data indicate that the signalling evident in neural signals is restricted to the spike count and the precise times of spikes relative to stimulus onset (response latency). These coding issues have implications for our understanding of cognitive models of attention and the roles of executive and slave systems.  相似文献   

14.
The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.  相似文献   

15.
Performance of timed motor sequences relies on the cerebellum and basal ganglia, which integrate proprioceptive information during the motor task and set internal timing mechanisms. Accordingly, these structures are also involved in other temporal processes, such as the discrimination of the different afferent information in the domain of time. In the present study we tested temporal processing of proprioceptive and tactile stimuli in 20 patients with neurodegenerative cerebellar ataxia and 20 age- and sex-matched healthy subjects. Tactile temporal discrimination threshold was defined as the value at which subjects recognized the two stimuli as asynchronous. Temporal discrimination movement threshold of the first dorsal interosseous and flexor carpi radialis was defined as the shortest interval between two paired electrical stimuli in which the subjects blindfolded perceived two separate index finger abductions and wrist flexions. Both tactile and movement temporal discrimination thresholds were higher in patients with cerebellar ataxia. No correlation was found with disease duration and severity. Our study demonstrates that temporal processing of tactile and proprioceptive stimuli is impaired in patients with cerebellar neurodegeneration and highlights the involvement of cerebellum in temporal processing of somatosensory stimuli of different type.  相似文献   

16.
Pei YC  Hsiao SS  Craig JC  Bensmaia SJ 《Neuron》2011,69(3):536-547
How are local motion signals integrated to form a global motion percept? We investigate the neural mechanisms of tactile motion integration by presenting tactile gratings and plaids to the fingertips of monkeys, using the tactile analogue of a visual monitor and recording the responses evoked in somatosensory cortical neurons. The perceived directions of the gratings and plaids are measured in parallel psychophysical experiments. We identify a population of somatosensory neurons that exhibit integration properties comparable to those induced by analogous visual stimuli in area MT and find that these neural responses account for the perceived direction of the stimuli across all stimulus conditions tested. The preferred direction of the neurons and the perceived direction of the stimuli can be predicted from the weighted average of the directions of the individual stimulus features, highlighting that the somatosensory system implements a vector average mechanism to compute tactile motion direction that bears striking similarities to its visual counterpart.  相似文献   

17.
Lesica NA  Grothe B 《PloS one》2008,3(2):e1655
In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural response in a manner consistent with the principles of efficient coding.  相似文献   

18.
Figuring space by time.   总被引:2,自引:0,他引:2  
E Ahissar  A Arieli 《Neuron》2001,32(2):185-201
Sensory information is encoded both in space and in time. Spatial encoding is based on the identity of activated receptors, while temporal encoding is based on the timing of activation. In order to generate accurate internal representations of the external world, the brain must decode both types of encoded information, even when processing stationary stimuli. We review here evidence in support of a parallel processing scheme for spatially and temporally encoded information in the tactile system and discuss the advantages and limitations of sensory-derived temporal coding in both the tactile and visual systems. Based on a large body of data, we propose a dynamic theory for vision, which avoids the impediments of previous dynamic theories.  相似文献   

19.
The ability to localize a chemical stimulus applied to the skin of the forearm was compared to the ability to localize a punctate tactile stimulus. The chemical stimulus was a single, 6-μ1 drop of a 1.0% solution of capsaicin in an ethanol vehicle; the tactile stimulus was a polyester monofilament that exerted 7.5 g of force. Subjects attempted to localize the stimuli at 30-sec intervals for a period of 13.5 min, and rated the perceived intensity and quality of the chemogenic sensations. To avoid generating potentially confounding tactile sensations, localization attempts were made by pointing to the area of sensation with a focused light beam. The results showed that overall, chemical localization was inferior to tactile localization: The absolute error of localization averaged 2.5 cm for capsaicin compared to 1.4 cm for the monofilament. The experiment also revealed that chemical localization (1) varied significantly across arms, (2) exhibited a relatively strong bias toward the elbow, and (3) appeared to be unaffected by the perceived intensity of the sensation. The dominant sensation quality reported was itch. The results are discussed in the context of cutaneous localization in general and localization in the nociceptive system in particular.  相似文献   

20.
Our understanding of multisensory integration has advanced because of recent functional neuroimaging studies of three areas in human lateral occipito-temporal cortex: superior temporal sulcus, area LO and area MT (V5). Superior temporal sulcus is activated strongly in response to meaningful auditory and visual stimuli, but responses to tactile stimuli have not been well studied. Area LO shows strong activation in response to both visual and tactile shape information, but not to auditory representations of objects. Area MT, an important region for processing visual motion, also shows weak activation in response to tactile motion, and a signal that drops below resting baseline in response to auditory motion. Within superior temporal sulcus, a patchy organization of regions is activated in response to auditory, visual and multisensory stimuli. This organization appears similar to that observed in polysensory areas in macaque superior temporal sulcus, suggesting that it is an anatomical substrate for multisensory integration. A patchy organization might also be a neural mechanism for integrating disparate representations within individual sensory modalities, such as representations of visual form and visual motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号