首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Melanocyte stimulating hormone (MSH) specifically induces differentiation of mammalian melanocytes. To further define the biochemical events elicited by this stimulus, we have cloned murine melanoma cells which are either highly responsive or nonresponsive to MSH, and have examined their ultrastructural appearance, their melanogenic activities, and also their expression of tyrosinase. We have found that the basal levels of melanogenic activity in pigmented and nonpigmented cells correlate with expression of surface MSH receptors rather than with production of tyrosinase. Nonpigmented cells produce a potent, highly stable inhibitor of melanogenesis; this inhibitor acts directly on tyrosinase to dramatically and abruptly suppress melanin production. This posttranslational control of tyrosinase activity may represent a critical regulatory point in mammalian pigmentation.  相似文献   

2.
3-Hydroxypyridine-4-ones have potential as orally active chelators of iron(III) and therefore may find application in the treatment of thalassaemia. An undesirable feature of these molecules is that they inhibit tyrosinase. We have established that alkyl substitution at position 2 in the aromatic ring minimizes interaction with tyrosinase and does so without appreciably influencing the affinity for iron(III).  相似文献   

3.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 microM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

4.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver–Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 μM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 μM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α>1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

5.
Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (17), identified as xanthohumol (1), 4′-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7). All isolated flavonoids (17) effectively inhibited the monophenolase (IC50s?=?15.4–58.4?µM) and diphenolase (IC50s?=?27.1–117.4?µM) activities of tyrosinase. Kinetic studies using Lineweaver–Burk and Dixon-plots revealed that chalcones (15) were competitive inhibitors, whereas flavanones (6 and 7) exhibited both mixed and non-competitive inhibitory characteristics. In conclusion, this study is the first to demonstrate that the phenolic phytochemicals of H. lupulus display potent inhibitory activities against tyrosinase.  相似文献   

6.
A series of polyphenolic curcumin analogs were synthesized and their inhibitory effects on mushroom tyrosinase and the inhibition of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical formation were evaluated. The results indictated that the analogs possessing m-diphenols and o-diphenols exhibited more potent inhibitory activity on tyrosinase than reference compound rojic acid, and that the analogs with o-diphenols exhibited more potent inhibitory activity of DPPH free-radical formation than reference compound vitamin C. The inhibition kinetics, analyzed by Lineweaver-Burk plots, revealed that compounds B(2) and C(2) bearing o-diphenols were non-competitive inhibitors, while compounds B(11) and C(11) bearing m-diphenols were competitive inhibitors. In particular, representative compounds C(2) and B(11) showed no side effects at a dose of 2,000 mg/kg in a preliminary evaluation of acute toxicity in mice. These results suggest that such polyphenolic curcumin analogs might serve as lead compounds for further design of new potential tyrosinase inhibitors.  相似文献   

7.
Synthesis of a focussed library of trans-stilbene compounds through Wittig and other base catalysed condensation reactions is presented. The synthesized stilbenes were screened for their inhibitory potential against murine tyrosinase activity to explore the structure activity relationship (SAR). Presence of electron withdrawing group (–CN) at the double bond and hydroxyl group or halogen atom especially at para-position on the aromatic rings was found to significantly elevate the inhibitory activity. Among all the compounds screened, compounds 2, 6, 8, 10, 11, 15 and 21 were found to exhibit appreciable inhibitory activity. Compound 21 ((E)-2,3-bis(4-Hydroxyphenyl)acryonitrile) was found to be the most active with an IC50 value of 5.06 μM which is less than half of the value 10.78 μM observed for resveratrol (common standard used in murine tyrosinase activity studies) under similar conditions. The results obtained from the present study reveal structural/functional group sensitivity for the tyrosinase inhibitory activity of stilbenoid moieties and are expected to be very helpful for the design and synthesis of novel, selective and effective tyrosinase inhibitors.  相似文献   

8.
Several synthetic N-substituted N-nitrosohydroxylamines were found to inhibit mushroom tyrosinase in a pH-dependent manner regardless of the N-substituent. The inhibitory activity, or pI50 ( ? log [IC50, M]) value, linearly decreased as the pH of the media increased. The inhibitory activities of tested N-substituted N-nitrosohydroxylamines at pH 6.8 and 5.8 were found to be almost 10 times and 100 times greater than at pH 7.8, respectively. The types of inhibition were different at pH 6.8 and 5.8. These results suggest that the inhibitory effect of N-substituted N-nitrosohydroxylamines is caused by the non-ionized form of the inhibitor. Furthermore, the mechanism of inhibition depends on the interaction between the inhibitor and the active site of tyrosinase at different pH values.  相似文献   

9.
Several synthetic N-substituted N-nitrosohydroxylamines were found to inhibit mushroom tyrosinase in a pH-dependent manner regardless of the N-substituent. The inhibitory activity, or pI(50) ( - log [IC(50), M]) value, linearly decreased as the pH of the media increased. The inhibitory activities of tested N-substituted N-nitrosohydroxylamines at pH 6.8 and 5.8 were found to be almost 10 times and 100 times greater than at pH 7.8, respectively. The types of inhibition were different at pH 6.8 and 5.8. These results suggest that the inhibitory effect of N-substituted N-nitrosohydroxylamines is caused by the non-ionized form of the inhibitor. Furthermore, the mechanism of inhibition depends on the interaction between the inhibitor and the active site of tyrosinase at different pH values.  相似文献   

10.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at Ki=0.235±0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: -32.58 kcal/mol, for AutoDock4.2: -5.66 kcal/mol, and for Fred2.2: -48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   

11.
12.
13.
Two new bi-pyridine compounds, [1,4'] Bipiperidinyl-1'-yl-naphthan-2-yl-methanone (I) and [1,4'] Bipiperidinyl-1'-yl-4-methylphenyl-methane (II) were synthesized and examined for inhibition of the catecholase activity of mushroom tyrosinase in 10 mM phosphate buffer pH 6.8, at 293 K using UV spectrophotometry. Inhibition kinetics indicated that they were uncompetitive inhibitors and the value of the inhibition constants were 5.87 and 1.31 microM for I and II, respectively, which showed high potency. Fluorescent studies confirmed the uncompetitive type of inhibition for these two inhibitors. The inhibition mechanism presumably comes from the presence of a particular hydrophobe site which can accommodate these inhibitors. This site could be formed due to a probable conformational change that was induced by binding of substrate with the enzyme.  相似文献   

14.
Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5mM dopachrome the oxygen consumption rate of TrT on 8mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone.  相似文献   

15.
16.
Tyrosinase inhibitors have potential applications in medicine, cosmetics and agriculture to prevent hyperpigmentation or browning effects. Some of the flavonoids mostly found in herbal plants and fruits are revealed as tyrosinase inhibitors. We studied the inhibitory effects of one such flavonoid, hesperetin, on mushroom tyrosinase using inhibition kinetics and computational simulation. Hesperetin reversibly inhibited tyrosinase in a competitive manner with Ki = 4.03 ± 0.26 mM. Measurements of ANS-binding fluorescence showed that hesperetin induced the hydrophobic disruption of tyrosinase. For further insight, we used the docking algorithms to simulate binding between tyrosinase and hesperetin. Simulation was successful (binding energies for Dock6.3: −34.41 kcal/mol and for AutoDock4.2: −5.67 kcal/mol) and showed that a copper ion coordinating with 3 histidine residues (HIS61, HIS85, and HIS259) within the active site pocket was chelated via hesperetin binding. Our study provides insight into the inhibition of tyrosinase in response to flavonoids. A combination of inhibition kinetics and computational prediction may facilitate the identification of potential natural tyrosinase inhibitors such as flavonoids and the prediction of their inhibitory mechanisms.  相似文献   

17.
The inhibition by m-coumaric acid of oxidation of L-dopa by epidermis tyrosinase (monophenol,dihydroxy-L-phenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is characterized by a prolonged transient phase. Kinetic data correspond to that for a postulated mechanism that involves rapid formation of a reduced enzyme-m-coumaric acid complex that subsequently undergoes a relatively slow reversible reaction. An overall inhibition constant for m-coumaric acid of 0.05 mM was calculated. The value of the Ki for the dissociation of m-coumaric acid from the rapidly formed complex was calculated as 0.53 mM. The first-order rate constants for the slow isomerization of the enzyme-inhibitor complex were calculated as 3.0 +/- 0.1 min-1 for the forward step and 0.31 +/- 0.06 min-1 for the reverse step.  相似文献   

18.
Tyrosinase plays a core role in melanogenesis of the various organisms. Therefore, the regulation of the tyrosinase activity is directly related with melanin synthesis. In this study, we investigated the Cl(-)-induced inhibition of human tyrosinase and the potent role of Cl(-) as a negative regulator in melanogenesis. For the inhibition kinetic studies, human tyrosinase was differently prepared from the TXM13 melanotic cells as well as from cells that had undergone gene transfection. We found that Cl(-) inhibited tyrosinase in a slope-parabolic competitive manner and tyrosinase gene transfection into HEK293 cell significantly down-regulated the expression levels of solute carrier family 12, member 4 (potassium/chloride transporters, SLC12A7) and solute carrier family 12, member 7 (potassium/chloride transporters, SLC12A7), which are known to be Cl(-) transporters. From the results of the inhibition kinetic studies and the Cl(-) transporter expression level, we suggested that Cl(-) might act as a potent regulatory factor in melanogenesis. It is worth notice that a high content of Cl(-) exists physiologically and tyrosinase reacts sensitively to Cl- in a complex interaction manner.  相似文献   

19.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

20.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号